Asynchronous Multi-Agent Bandits: Fully Distributed vs. Leader-Coordinated Algorithms

Xuchuang Wang^{1*}, Janice Yu-Zhen Chen^{1*}, Xutong Liu², Lin Yang³, Mohammad Hajiesmaili¹, Don Towsley¹, John C.S. Lui⁴

¹University of Massachusetts Amherst, ²Carnegie Mellon University, ³Nanjing University, ⁴Chinese University of Hong Kong

SIGMETRICS 2025

Asynchronous Multi-Agent Decision-Making Systems

Question: Can asynchronous agents cooperate efficiently?

• 🔯 Model:

- Asynchronous Multi-Agent Bandits
- Group Regret & Communication
- 🗑 Algorithm:
 - Fully Distributed: SE-AAC-ODC
 - Leader-Coordinated: LF-Relay
- 🕂 Comparison:
 - Theoretical
 - Empirical

Asynchronous Multi-Agent System

Decision Rounds t

For each agent $m \in \mathcal{M}$: Set of active decision rounds $\mathcal{T}^{(m)}$ is **Unknown and Arbitrary** (or even *oblivious adversary*)

Chen, Yu-Zhen Janice, et al. "On-demand communication for asynchronous multi-agent bandits." International Conference on Artificial Intelligence and Statistics. PMLR, 2023.

Asynchronous Multi-Agent Bandits: Setting

- *K* Arms -- each arm *k* has a reward *dist*. with **unknown** mean μ_k
 - Optimal arm: $k^* = \operatorname{argmax}_{k \in \mathcal{K}} \mu_k$
- For each agent $m \in \mathcal{M}$ & each **active** decision round $t \in \mathcal{T}^{(m)}$,
 - Select one arm $I_t^{(m)} \in \mathcal{K}$ to pull;
 - Observe the reward realization $X_{I,t}^{(m)}$ of the pulled arm.

Asynchronous Multi-Agent Bandits: Objective

• Communication:

$$C_T \coloneqq \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}^{(m)}} \mathbb{I}[\text{Agent } m \text{ send/receive message at round } t]$$

• Aim to minimize both objectives.

• 🔯 Model:

- Asynchronous Multi-Agent Bandits
- Group Regret & Communication
- 🗑 Algorithm:
 - Fully Distributed: SE-AAC-ODC
 - Leader-Coordinated: LF-Relay
- 🕂 Comparison:
 - Theoretical
 - Empirical

- Arm-Pulling Policy (SE)
- Communication Policy
 - When to Communicate (AAC)
 - Who to Communicate with (ODC)

When to Comm: AAC-Accuracy Adaptive Comm.

Communication trigger:

- Confidence radius r_k as accuracy measure.
- When the accuracy improves $\alpha > 1$ times, communicate.

If $\alpha r_{I_t^{(m)}} \leq r_{\text{last, }I_t^{(m)}}$ then communicate info. of arm $I_t^{(m)}$

- The fastest agent (since last comm.) communicates more frequently.
- Communicate to ALL agents? \Rightarrow Redundant / Inefficient

Who to Comm. with: ODC-On-Demand Comm.

Fully Distributed Algorithm (SE-AAC-ODC)

• Arm-Pulling Policy (SE: Successive Elimination)

Maintain candidate arm set C (potential good arms) For each active decision round:

- **Decision**: Pull arms from the candidate arm set in a round-robin manner
- Elimination: Remove arm k from C whose $UCB_k < \max_{k' \in C} LCB_{k'}$

If remove arm k from candidate set C then notify the elimination.

- Communication Policy
 - When to communicate (**AAC**) + Who to communicate with (**ODC**)

• 🔯 Model:

- Asynchronous Multi-Agent Bandits
- Group Regret & Communication

• 🗑 Algorithm:

- Fully Distributed: SE-AAC-ODC
- Leader-Coordinated: LF-Relay

• 🕂 Comparison:

- Theoretical
- Empirical

Leader-Follower Scheme

- One agent as the Leader
 - 1. Explore when needed
 - 2. Recommend arm for followers to pull
- Other M 1 agents as Followers
 - 3. Exploit: just pull the recommended arm.

The leader needs to be active *frequently* for exploration.

The leader needs to be active *frequently* for exploration.

Leader-Follower Scheme

- For synchronous, any agent could be the leader.
- For asynchronous, hard to find a single competent leader.

A sequence of agents as the Leader! But active rounds are unknown!

A sequence of agents as the Leader!

Leader Relay: Competent Leader Sequence

Decision Rounds t

Adversary Bandit Problem

- Adversarial reward sequence: Binary active/inactive status
- Maximize total reward: Maximize #active status
- Arm-pulling sequence: Leader Sequence

Changing leadership frequently can incur linear communication costs.

Leader Relay: Low Leadership Switch

Decision Rounds t

Adversary Bandits with Low Switch Cost

- Mini-Batch: Split into S batches, fix leader for each $\frac{1}{c}$ -batch
- **Tsallis-INF** $(4\sqrt{MT} \text{ regret})$: Switch $S = 64M^3$ is enough!

[•] Zimmert, Julian, and Yevgeny Seldin. "Tsallis-inf: An optimal algorithm for stochastic and adversarial bandits." Journal of Machine Learning Research 22.28 (2021): 1-49. 15/20

[•] Altschuler, Jason M., and Kunal Talwar. "Online Learning over a Finite Action Set with Limited Switching." Mathematics of Operations Research 46.1 (2021): 179-203.

Leader-Coordinated Algorithm: Leader-Follower + Leader-Relay

- One agent as the Leader
 - 1. Explore when needed
 - 2. Recommend arm for followers to pull
- Other M 1 agents as Followers
 - Exploit: just pull the recommended arm.

• 🔯 Model:

- Asynchronous Multi-Agent Bandits
- Group Regret & Communication
- 🗑 Algorithm:
 - Fully Distributed: SE-AAC-ODC
 - Leader-Coordinated: LF-Relay

• Comparison:

- Theoretical
- Empirical

- The leader-coordinated algorithm achieves the optimal regret.
- The fully distributed algorithm enjoys lower communication costs.

Empirical Comparison

SE-AAC-ODC: lowest communication!

LF-Relay: lower regret!

Thank you!

Summary

- 💥 Fully distributed algorithm
 - Better Communication
 - Challenge: When to Comm. & Who to Comm. with
 - Technique: Accuracy Adaptive + On-Demand
- 🚀 Leader-coordinated algorithm
 - Better Group Regret
 - Challenge: Choose Competent Leaders
 - Technique: Leader Relay (Adversary Bandits) + Leader-Follower