# Multi-Player Multi-Armed Bandits with Finite Shareable Resources Arms: Learning Algorithms & Applications

#### Xuchuang Wang<sup>1</sup>, Hong Xie<sup>2</sup>, John C.S. Lui<sup>1</sup>

The Chinese University of Hong Kong<sup>1</sup>, Chongqing University<sup>2</sup>



香港中文大學 The Chinese University of Hong Kong



June 8, 2022

## (Single-Player) Multi-Armed Bandits

• *K* arms: each associated with a [0, 1]-supported reward  $X_k$  with mean  $\mu_k$ .

- Assume  $\mu_1 > \mu_2 > \cdots > \mu_K$ .
- For *t* = 1,..., *T*:
  - Pulls an arm  $k_t \in \{1, 2, ..., K\}$ .
  - Collects reward  $X_{k,t}$ .

Goal: maximize total reward; or minimize the regret

$$\mathbb{E}[\operatorname{\mathsf{Reg}}(T)] := T\mu_1 - \sum_{t=1}^T \mu_{k_t}.$$

## (Single-Player) Multi-Armed Bandits

• *K* arms: each associated with a [0, 1]-supported reward  $X_k$  with mean  $\mu_k$ .

Assume 
$$\mu_1 > \mu_2 > \cdots > \mu_K$$
.

- For *t* = 1, . . . , *T*:
  - Pulls an arm  $k_t \in \{1, 2, ..., K\}$ .
  - Collects reward  $X_{k,t}$ .

Goal: maximize total reward; or minimize the regret

$$\mathbb{E}[\operatorname{\mathsf{Reg}}(T)] := \underbrace{T\mu_1}_{\operatorname{\mathsf{Optimal}}} - \sum_{t=1}^T \mu_{k_t}.$$

## (Single-Player) Multi-Armed Bandits

• *K* arms: each associated with a [0, 1]-supported reward  $X_k$  with mean  $\mu_k$ .

Assume 
$$\mu_1 > \mu_2 > \cdots > \mu_K$$
.

- For *t* = 1, . . . , *T*:
  - Pulls an arm  $k_t \in \{1, 2, ..., K\}$ .
  - Collects reward  $X_{k,t}$ .

Goal: maximize total reward; or minimize the regret

$$\mathbb{E}[\operatorname{Reg}(T)] \coloneqq \underbrace{\mathcal{T}\mu_{1}}_{\operatorname{Optimal}} - \underbrace{\sum_{t=1}^{T}\mu_{k_{t}}}_{\operatorname{Algorithm's}}.$$

## **Multi-Player Multi-Armed Bandits**

- K arms and *M* players.
- For  $t = 1, \ldots, T$ : For each player  $i \in \{1, 2, \ldots, M\}$ 
  - Pulls an arm  $k \in \{1, 2, \ldots, K\}$ .
  - Collects reward  $R_{k,t}$ .

Goal: minimize the **regret** of all *M* players

#### When More Than One Player Chooses The Same Arm

Collision (e.g., [1]): if two players *i*, *j* collides, then zero reward.

Non-Collision (e.g., [4]): each player obtains an independent reward  $X_{k,t}^{(i)}$ 



#### When More Than One Player Chooses The Same Arm

Collision (e.g., [1]): if two players *i*, *j* collides, then zero reward.

Non-Collision (e.g., [4]): each player obtains an independent reward  $X_{k,t}^{(i)}$ 



However, both can be too restrictive in practice.

## Finite Shareable Resources Arm (MMAB-SA)

- Each arm has two **unknowns**:
  - "per-load" reward mean  $\mu_k$  and integer resources  $m_k$ .

If  $a_{k,t}$  players share arm k with  $m_k$  resources, then

$$R_{k,t} \coloneqq \min\{a_{k,t}, m_k\} X_{k,t} = \begin{cases} a_{k,t} X_{k,t}, & a_{k,t} \leqslant m_k \\ m_k X_{k,t}, & a_{k,t} > m_k \end{cases},$$

•  $X_{k,t}$  is the "per-load" reward random variable.



## **Two Types of Sharing Demand Feedback**

#### Sharing Demand Information (SDI):

• observe the number of players  $a_{k,t}$  that selects the arm k

#### Sharing Demand Awareness (SDA):

• know the sharing condition of the pulled arm, i.e.,  $\mathbb{1}\{a_{k,t} > 1\}$ .



(a) Edge Computing [3]



(b) Wireless Network [2]

Two Algorithms for Two Types of Feedback

Algorithm 1 DPE-SDI for player *i* 

▷ **Initialization phase:** assign each player a rank  $i \in \{1, ..., M\}$ ; rank 1 player becomes the leader.

while  $t \leq T$  do

 $\triangleright$  **Exploration-exploitation phase:** estimate means  $\mu_k$  and resources  $m_k$ .

▷ Communication phase: leader updates and sends info. to followers.

Two Algorithms for Two Types of Feedback

Algorithm 1 DPE-SDI for player *i* 

▷ **Initialization phase:** assign each player a rank  $i \in \{1, ..., M\}$ ; rank 1 player becomes the leader.

while  $t \leq T$  do

 $\triangleright$  **Exploration-exploitation phase:** estimate means  $\mu_k$  and resources  $m_k$ .

Communication phase: leader updates and sends info. to followers.

Algorithm 2 SIC-SDA for player *i* 

#### Initialization phase

while player *i* does not find an optimal arm do

 $\triangleright$  **Exploration phase:** estimate reward means  $\mu_k$  and resources  $m_k$ .

▷ **Communication phase:** leader receives follower's statistics and send out its updated info. to followers.

**Exploitation phase**: play the identified optimal arm till the end.

## **Theoretical Results**



$$\mathbb{E}[\operatorname{\mathsf{Reg}}(T)] \leqslant O\left(\sum_{k=L+1}^{K} \frac{\log T}{\mu_L - \mu_k} + \sum_{k=1}^{M} \frac{m_k^2}{\mu_k^2} \log T\right).$$



$$\mathbb{E}[\operatorname{\mathsf{Reg}}(T)] \leqslant O\left(\sum_{k=L+1}^{K} \frac{M \log T}{\mu_L - \mu_K} + \sum_{k=1}^{M} \frac{m_k^2}{\mu_k^2} \log T\right).$$

## **Simulations**



Regret Regret DPE-SDI DPE-SDI SIC-SDI SIC-SDI --- SIC-SDA --- SIC-SDA 2 1 0 0 ò ò i ż 5 ×10<sup>5</sup> 5 ×10<sup>5</sup> 3 à 1 Ż 3 t (c)  $\Delta = 0.025$ (d)  $\Delta = 0.037$ 

Figure: Synthetic data simulations (SDI > SDA)

# **Simulations**





(a)  $\Delta = 0.001$ 





Figure: Synthetic data simulations (SDI > SDA)



Figure: 5G/4G network (SDA)

# Thank you!

Full paper at arXiv:2204.13502

#### **References I**

- [1] Etienne Boursier and Vianney Perchet. Sic-mmab: Synchronisation involves communication in multiplayer multi-armed bandits. In *Advances in Neural Information Processing Systems*, volume 32, pages 12071–12080, 2019.
- [2] Tokyu Corporation and Sumitomo Corporation. Launch of pilot experiment on 5g base-station-sharing business in shibuya, 2019. URL https://www. sumitomocorp.com/en/africa/news/release/2019/group/12330.
- [3] SPEC INDIA. What is edge computing? the quick overview explained with examples, 2019. URL https://www.spec-india.com/blog/ what-is-edge-computing-the-quick-overview-explained-with-example
- [4] Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative decision-making in multiarmed bandits: Frequentist and bayesian algorithms. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 167–172. IEEE, 2016.