Exploration for Free：How Does Reward Heterogeneity Improve Regret in Cooperative Multi－agent Bandits？

Xuchuang Wang ${ }^{1}$ ，Lin Yang ${ }^{2}$ ，Yu－Zhen Janice Chen ${ }^{3}$ ，Xutong Liu ${ }^{1}$ ， Mohammad Hajiesmaili ${ }^{3}$ ，Don Towsley ${ }^{3}$ ，John C．S．Lui ${ }^{1}$

To Appear in UAI 2023
The Chinese University of Hong Kong ${ }^{1}$ ，Nanjing University ${ }^{2}$ ，University of Massachusetts Amherst ${ }^{3}$

香港中文大學
The Chinese University of Hong Kong
University of
Massachusetts
Amherst

Motivation Example for Action Constrained Multi-Agent Bandits

Agents have access to its nearby arms

Motivation Example for Action Constrained Multi-Agent Bandits

$11 M$ Agents and K Arms (set \mathcal{K})
2 Each agent m has access to a subset of arms $\mathcal{K}^{(m)} \subseteq \mathcal{K}$
3 Overlap $\mathcal{K}^{(m)} \cap \mathcal{K}^{\left(m^{\prime}\right)}$ leads to cooperation.

Agents have access to its nearby arms

Motivation Example for Action Constrained Multi-Agent Bandits

$1 M$ Agents and K Arms (set \mathcal{K})
2 Each agent m has access to a subset of arms $\mathcal{K}^{(m)} \subseteq \mathcal{K}$
3 Overlap $\mathcal{K}^{(m)} \cap \mathcal{K}^{\left(m^{\prime}\right)}$ leads to cooperation.

(a) Drone swarm

(b) Path routing

Agents have access to its nearby arms

Action Constrained Multi-Agent Multi-Armed Bandits (1/2)

■ \bar{K} arms: each associated with a Bernoulli variable $X_{t}(k)$ with mean $\mu(k)$

- Assume $\mu(1)>\cdots>\mu(K)$.

Action Constrained Multi-Agent Multi-Armed Bandits (1/2)

■ K arms: each associated with a Bernoulli variable $X_{t}(k)$ with mean $\mu(k)$
■ Assume $\mu(1)>\cdots>\mu(K)$.
$\square M$ Agents: each agent m has access to a subset of local arms $\mathcal{K}^{(m)} \subseteq \mathcal{K}$
■ Local optimal $\operatorname{arm} k_{*}^{(m)}:=\underset{k \in \mathcal{K}^{(m)}}{\arg \max } \mu(k)$

Action Constrained Multi-Agent Multi-Armed Bandits (1/2)

- K arms: each associated with a Bernoulli variable $X_{t}(k)$ with mean $\mu(k)$

■ Assume $\mu(1)>\cdots>\mu(K)$.

- $\overline{M \text { Agents }}$: each agent m has access to a subset of local arms $\mathcal{K}^{(m)} \subseteq \mathcal{K}$
- Local optimal arm $k_{*}^{(m)}:=\underset{k \in \mathcal{K}(m)}{\arg \max } \mu(k)$
- TRounds: in each round $t \leqslant T$
- Each agent m pulls an arm $k_{t}^{(m)} \in \mathcal{K}^{(m)}$ and collects reward $X_{k}^{(m)}\left(k_{t}^{(m)}\right)$.

Action Constrained Multi-Agent Multi-Armed Bandits (2/2)

Group regret with \bar{K} arms M Agents T Rounds

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right]:=\sum_{m \in \mathcal{M}} \underbrace{\sum_{t \in \mathcal{T}}\left(\mu\left(k_{*}^{(m)}\right)-\mu\left(k_{t}^{(m)}\right)\right)}_{\text {agent m's regret }}
$$

Action Constrained Multi-Agent Multi-Armed Bandits (2/2)

Group regret with K arms M Agents T Rounds

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] & :=\sum_{m \in \mathcal{M}} \underbrace{\sum_{t \in \mathcal{T}}\left(\mu\left(k_{*}^{(m)}\right)-\mu\left(k_{t}^{(m)}\right)\right)}_{\text {agent m's regret }} \\
& =\sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} \Delta^{(m)}(k)
\end{aligned}
$$

■ $\Delta^{(m)}(k):=\mu\left(k_{*}^{(m)}\right)-\mu(k)$ is the reward gap of arm k with respect to agent m's local optimal arm $k_{*}^{(m)}$.

Action Constrained Multi-Agent Multi-Armed Bandits (2/2)

Group regret with \bar{K} arms M Agents T Rounds

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] & :=\sum_{m \in \mathcal{M}} \underbrace{\sum_{t \in \mathcal{T}}\left(\mu\left(k_{*}^{(m)}\right)-\mu\left(k_{t}^{(m)}\right)\right)}_{\text {agent m's regret }} \\
& =\sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} \Delta^{(m)}(k) \\
& =\sum_{m \in \mathcal{M}} \sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) n_{T}^{(m)}(k)
\end{aligned}
$$

■ $\Delta^{(m)}(k):=\mu\left(k_{*}^{(m)}\right)-\mu(k)$ is the reward gap of arm k with respect to agent m's local optimal arm $k_{*}^{(m)}$.
■ $n_{T}^{(m)}(k)$ is the number of times that agent m pulls arm k till the end.

Individual v.s. Cooperative: Algorithm Design

1 Individual UCB arm pull policy: at time t, agent m pulls

$$
k_{t}^{(m)}=\underset{k \in \mathcal{K}^{(m)}}{\arg \max } \mathrm{UCB}_{t}^{(m)}(k)=\underset{k \in \mathcal{K}^{(m)}}{\arg \max } \underbrace{\hat{\mu}_{t}^{(m)}(k)}_{\text {empirical mean }}+\underbrace{\sqrt{\frac{2 \log t}{n_{t}^{(m)}(k)}}}_{\text {confidence radius }}
$$

where $n_{t}^{(m)}(k)$ is the number of times that agent m pulls arm k up to time t, and $\hat{\mu}_{t}^{(m)}(k)$ is the average of these $n_{t}^{(m)}(k)$'s observations.

Individual v.s. Cooperative: Algorithm Design

1 Individual UCB arm pull policy: at time t, agent m pulls

$$
k_{t}^{(m)}=\underset{k \in \mathcal{K}^{(m)}}{\arg \max \mathrm{UCB}_{t}^{(m)}(k)=\underset{k \in \mathcal{K}^{(m)}}{\arg \max } \underbrace{\hat{\mu}_{t}^{(m)}(k)}_{\text {empirical mean }}+\underbrace{\sqrt{\frac{2 \log t}{n_{t}^{(m)}(k)}}}_{\text {confidence radius }}, ., \text {, },{ }^{\sqrt{2}}}
$$

where $n_{t}^{(m)}(k)$ is the number of times that agent m pulls arm k up to time t, and $\hat{\mu}_{t}^{(m)}(k)$ is the average of these $n_{t}^{(m)}(k)$'s observations.
2 Cooperative UCB arm pull policy: at time t, agent m pulls

$$
k_{t}^{(m)}=\underset{k \in \mathcal{K}^{(m)}}{\arg \max } \mathrm{UCB}_{t}(k)=\underset{\substack{ \\
\arg \max (m)}}{\substack{\text { empirical mean } \\
\text { global }}} \hat{\mu}_{t}(k) \quad \underbrace{\sqrt{\frac{2 \log t}{n_{t}(k)}}}_{\begin{array}{c}
\text { confidence radius } \\
\text { global }
\end{array}}
$$

where $n_{t}(k)$ is the number of times that all M agents pull arm k up to time t, and $\hat{\mu}_{t}(k)$ is the average of these $n_{t}(k)$'s observations.

Individual v.s. Cooperative: Regret Analysis

1 Individual UCB's regret:

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{m \in \mathcal{M}^{\prime}} \sum_{k \in \mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}} \frac{\log T}{\Delta^{(m)}(k)}\right)
$$

where $\Delta^{(m)}(k):=\mu\left(k_{*}^{(m)}\right)-\mu(k)$ is the reward gap of arm k with respect to agent m 's local optimal arm.

Individual v.s. Cooperative: Regret Analysis

1 Individual UCB's regret:

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{m \in \mathcal{M}^{\prime}} \sum_{k \in \mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}} \frac{\log T}{\Delta^{(m)}(k)}\right)
$$

where $\Delta^{(m)}(k):=\mu\left(k_{*}^{(m)}\right)-\mu(k)$ is the reward gap of arm k with respect to agent m 's local optimal arm.
2 Cooperative UCB's regret:

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \cup_{m \in \mathcal{M}}\left(\mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}\right)} \frac{\log T}{\tilde{\Delta}(k)}\right)
$$

where $\tilde{\Delta}(k):=\min _{m: k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k)$ is the smallest reward gap of local suboptimal arm k with respect to any feasible agent m 's local optimal arm.

Individual v.s. Cooperative: Regret Analysis

1 Individual UCB's regret:

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{m \in \mathcal{M}^{\prime}} \sum_{k \in \mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}} \frac{\log T}{\Delta^{(m)}(k)}\right)
$$

where $\Delta^{(m)}(k):=\mu\left(k_{*}^{(m)}\right)-\mu(k)$ is the reward gap of arm k with respect to agent m 's local optimal arm.
2 Cooperative UCB's regret: How good?

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \cup_{m \in \mathcal{M}}\left(\mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}\right)} \frac{\log T}{\tilde{\Delta}(k)}\right)
$$

where $\tilde{\Delta}(k):=\min _{m: k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k)$ is the smallest reward gap of local suboptimal arm k with respect to any feasible agent m 's local optimal arm.

Regret Lower Bound and Free Exploration Intuition (1/2)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right]=\sum_{m \in \mathcal{M}} \underbrace{\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) n_{T}^{(m)}(k)}_{\text {regret of agent } m}
$$

Regret Lower Bound and Free Exploration Intuition (1/2)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right]=\sum_{m \in \mathcal{M}} \underbrace{\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) n_{T}^{(m)}(k)}_{\text {regret of agent } m}
$$

1 In single agent m 's bandit, to distinguish a suboptimal arm requires

$$
n_{T}^{(m)}(k)=\Omega\left(\frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right) \text { pulls. }
$$

Regret Lower Bound and Free Exploration Intuition (1/2)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right]=\sum_{m \in \mathcal{M}} \underbrace{\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) n_{T}^{(m)}(k)}_{\text {regret of agent } m}
$$

1 In single agent m 's bandit, to distinguish a suboptimal arm requires
$n_{T}^{(m)}(k)=\Omega\left(\frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)$ pulls.

- Therefore, $\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) \times \frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)=\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \frac{\log T}{\Delta^{(m)}(k)}\right)$ regret lower bound.

Regret Lower Bound and Free Exploration Intuition (1/2)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right]=\sum_{m \in \mathcal{M}} \underbrace{\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) n_{T}^{(m)}(k)}_{\text {regret of agent } m}
$$

1 In single agent m 's bandit, to distinguish a suboptimal arm requires $n_{T}^{(m)}(k)=\Omega\left(\frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)$ pulls.

- Therefore, $\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) \times \frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)=\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \frac{\log T}{\Delta^{(m)}(k)}\right)$ regret lower bound.
2 In cooperative multi-agent bandits, we need $\Omega\left(\frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)$ pulls.

Regret Lower Bound and Free Exploration Intuition (1/2)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right]=\sum_{m \in \mathcal{M}} \underbrace{\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) n_{T}^{(m)}(k)}_{\text {regret of agent } m}
$$

1 In single agent m 's bandit, to distinguish a suboptimal arm requires
$n_{T}^{(m)}(k)=\Omega\left(\frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)$ pulls.

- Therefore, $\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) \times \frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)=\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \frac{\log T}{\Delta^{(m)}(k)}\right)$ regret lower bound.
2 In cooperative multi-agent bandits, we need $\Omega\left(\frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)$ pulls.
- Therefore, $\Omega\left(\sum_{k \in \mathcal{K}} \tilde{\Delta}(k) \times \frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)=\Omega\left(\sum_{k \in \mathcal{K}} \frac{\log T}{\tilde{\Delta}(k)}\right)$ regret lower bound?

Regret Lower Bound and Free Exploration Intuition (1/2)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right]=\sum_{m \in \mathcal{M}} \underbrace{\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) n_{T}^{(m)}(k)}_{\text {regret of agent } m}
$$

1 In single agent m 's bandit, to distinguish a suboptimal arm requires
$n_{T}^{(m)}(k)=\Omega\left(\frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)$ pulls.

- Therefore, $\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \Delta^{(m)}(k) \times \frac{\log T}{\left(\Delta^{(m)}(k)\right)^{2}}\right)=\Omega\left(\sum_{k \in \mathcal{K}^{(m)}} \frac{\log T}{\Delta^{(m)}(k)}\right)$ regret lower bound.
2 In cooperative multi-agent bandits, we need $\Omega\left(\frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)$ pulls.
- Therefore, $\Omega\left(\sum_{k \in \mathcal{K}} \tilde{\Delta}(k) \times \frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)=\Omega\left(\sum_{k \in \mathcal{K}} \frac{\log T}{\tilde{\Delta}(k)}\right)$ regret lower bound?

Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: $\Omega\left(\sum_{k \in \mathcal{K}} \Delta^{(\boldsymbol{?})}(k) \times \frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)$

Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: $\Omega\left(\sum_{k \in \mathcal{K}} \Delta^{(\boldsymbol{?})}(k) \times \frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)$
2 May exist $\Delta^{(m)}(k)=0$ if the arm $k=k_{*}^{(m)}$ is local optimal for some agent m.

Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: $\Omega\left(\sum_{k \in \mathcal{K}} \Delta^{(\boldsymbol{?})}(k) \times \frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)$
2 May exist $\Delta^{(m)}(k)=0$ if the arm $k=k_{*}^{(m)}$ is local optimal for some agent m.
3 Denote $\mathcal{F}:=\left\{k_{*}^{(m)}: m \in \mathcal{M}\right\}$ as arms can be freely explored.

$$
\Omega\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)
$$

Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: $\Omega\left(\sum_{k \in \mathcal{K}} \Delta^{(\boldsymbol{?})}(k) \times \frac{\log T}{(\tilde{\Delta}(k))^{2}}\right)$
2 May exist $\Delta^{(m)}(k)=0$ if the arm $k=k_{*}^{(m)}$ is local optimal for some agent m.
3 Denote $\mathcal{F}:=\left\{k_{*}^{(m)}: m \in \mathcal{M}\right\}$ as arms can be freely explored.

$$
\Omega\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)
$$

4 Cooperative UCB is not optimal.
■ $\mathcal{K} \backslash \mathcal{F} \subseteq \cup_{m \in \mathcal{M}}\left(\mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}\right)$ of Cooperative UCB's upper bound.

Key Contribution Illustrated: three arms $\mu(1)>\mu(2)>\mu(3)$

	$\mu(1)$	$\mu(2)$	$\mu(3)$
Agent 1	\checkmark	\checkmark	\checkmark
Agent 2	\times	\checkmark	\checkmark
Agent 3	\times	\mathbf{X}	\checkmark

Key Contribution Illustrated: three arms $\mu(1)>\mu(2)>\mu(3)$

Key Contribution Illustrated: three arms $\mu(1)>\mu(2)>\mu(3)$

$1 \mathcal{K}=\mathcal{F}$, all arms can be freely explored: FreeExp achieves constant regret.

Free Exploration: Algorithm Design

```
Algorithm 1 The FreeExp Algorithm (for Agent m)
    1: for each time slot \(t\) do
    2: \(\quad l_{t}^{(m)} \leftarrow \arg \max _{k \in \mathcal{K}^{(m)}} \hat{\mu}_{t}(k) \quad \triangleright\) identify empirical optimal arm
    3: \(\quad\) Send \(I_{t}^{(m)}\) to other agents and collect their \(I_{t}^{\left(m^{\prime}\right)}\)
```


Free Exploration: Algorithm Design

Algorithm 1 The FreeExp Algorithm (for Agent m)

1: for each time slot t do
2: $\quad l_{t}^{(m)} \leftarrow \arg \max _{k \in \mathcal{K}^{(m)}} \hat{\mu}_{t}(k) \quad \triangleright$ identify empirical optimal arm 3: \quad Send $I_{t}^{(m)}$ to other agents and collect their $I_{t}^{\left(m^{\prime}\right)}$
4: $\quad \mathcal{D}_{t}^{(m)} \leftarrow\left\{k \in \mathcal{K}^{(m)}: \operatorname{UCB}_{t}(k)>\hat{\mu}_{t}\left(l_{t}^{(m)}\right)\right\} \quad \triangleright$ choose high KL-UCB arms
5: $\quad \mathcal{D}_{t}^{(m)} \leftarrow \mathcal{D}_{t}^{(m)} \backslash\left\{l_{t}^{\left(m^{\prime}\right)}: \forall m^{\prime} \in \mathcal{M}\right\} \quad \triangleright$ free exploration

Free Exploration: Algorithm Design

Algorithm 1 The FreeExp Algorithm (for Agent m)

1: for each time slot t do
2: $\quad l_{t}^{(m)} \leftarrow \arg \max _{k \in \mathcal{K}^{(m)}} \hat{\mu}_{t}(k) \quad \triangleright$ identify empirical optimal arm
3: \quad Send $I_{t}^{(m)}$ to other agents and collect their $I_{t}^{\left(m^{\prime}\right)}$
4: $\quad \mathcal{D}_{t}^{(m)} \leftarrow\left\{k \in \mathcal{K}^{(m)}: \operatorname{UCB}_{t}(k)>\hat{\mu}_{t}\left(I_{t}^{(m)}\right)\right\} \quad \triangleright$ choose high KL-UCB arms
5: $\quad \mathcal{D}_{t}^{(m)} \leftarrow \mathcal{D}_{t}^{(m)} \backslash\left\{I_{t}^{\left(m^{\prime}\right)}: \forall m^{\prime} \in \mathcal{M}\right\}$
\triangleright free exploration
6: \quad if $\mathcal{D}_{t}^{(m)}=\emptyset$ then
7: $J_{t}^{(m)} \leftarrow l_{t}^{(m)} \triangleright$ exploit, if correct only agent m pulls $k_{*}^{(m)}$ else
9: $\quad J_{t}^{(m)} \leftarrow\left\{\begin{array}{ll}l_{t}^{(m)} & \text { w.p. } \frac{1}{2} \\ \text { uniformly pick an arm from } \mathcal{D}_{t}^{(m)} & \text { w.p. } \frac{1}{2}\end{array} \quad \triangleright\right.$ explore

Free Exploration: Algorithm Design

Algorithm 1 The FreeExp Algorithm (for Agent m)
1: for each time slot t do
2: $\quad l_{t}^{(m)} \leftarrow \arg \max _{k \in \mathcal{K}^{(m)}} \hat{\mu}_{t}(k) \quad \triangleright$ identify empirical optimal arm
3: \quad Send $I_{t}^{(m)}$ to other agents and collect their $I_{t}^{\left(m^{\prime}\right)}$
4: $\quad \mathcal{D}_{t}^{(m)} \leftarrow\left\{k \in \mathcal{K}^{(m)}: \operatorname{UCB}_{t}(k)>\hat{\mu}_{t}\left(I_{t}^{(m)}\right)\right\} \quad \triangleright$ choose high KL-UCB arms
5: $\quad \mathcal{D}_{t}^{(m)} \leftarrow \mathcal{D}_{t}^{(m)} \backslash\left\{I_{t}^{\left(m^{\prime}\right)}: \forall m^{\prime} \in \mathcal{M}\right\}$
\triangleright free exploration
6: \quad if $\mathcal{D}_{t}^{(m)}=\emptyset$ then

$$
J_{t}^{(m)} \leftarrow l_{t}^{(m)} \triangleright \text { exploit, if correct only agent } m \text { pulls } k_{*}^{(m)}
$$

else
9: $\quad J_{t}^{(m)} \leftarrow\left\{\begin{array}{ll}l_{t}^{(m)} & \text { w.p. } \frac{1}{2} \\ \text { uniformly pick an arm from } \mathcal{D}_{t}^{(m)} & \text { w.p. } \frac{1}{2}\end{array} \quad \triangleright\right.$ explore
10: Pull arm $J_{t}^{(m)}$ and receive observations
11: \quad Synchronize observations with other agents and Update $\hat{\mu}_{t}(k)$ and $\mathrm{UCB}_{t}(k)$

Free Exploration: Analysis (1/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

Free Exploration: Analysis (1/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Theoretical improvement: summation range

$$
\underbrace{(m \times k) \in(\mathcal{M} \times \mathcal{K})}_{\text {UCB [Auer, 2002] }} \Longrightarrow \underbrace{k \in \bigcup_{m \in \mathcal{M}}\left(\mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}\right)}_{\text {CO-UCB [Yang et al., 2022] }} \Longrightarrow \underbrace{k \in \mathcal{K} \backslash \mathcal{F}}_{\text {FreeExp (ours) }}
$$

Free Exploration: Analysis (1/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Theoretical improvement: summation range

$$
\underbrace{(m \times k) \in(\mathcal{M} \times \mathcal{K})}_{\text {UCB [Auer, 2002] }} \Longrightarrow \underbrace{k \in \bigcup_{m \in \mathcal{M}}\left(\mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}\right)}_{\text {CO-UCB [Yang et al., 2022] }} \Longrightarrow \underbrace{k \in \mathcal{K} \backslash \mathcal{F}}_{\text {FreeExp (ours) }}
$$

2 Regret optimality: Match regret lower bound up to constant coefficients.

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \geqslant \Omega\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right) \quad \text { "informal" }
$$

Free Exploration: Analysis (1/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Theoretical improvement: summation range

$$
\underbrace{(m \times k) \in(\mathcal{M} \times \mathcal{K})}_{\text {UCB [Auer, 2002] }} \Longrightarrow \underbrace{k \in \bigcup_{m \in \mathcal{M}}\left(\mathcal{K}^{(m)} \backslash\left\{k_{*}^{(m)}\right\}\right)}_{\text {CO-UCB [Yang et al., 2022] }} \Longrightarrow \underbrace{k \in \mathcal{K} \backslash \mathcal{F}}_{\text {FreeExp (ours) }}
$$

2 Regret optimality: Match regret lower bound up to constant coefficients.

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \geqslant \Omega\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right) \quad \text { "informal" }
$$

3 Finite regret in special case:
When $\mathcal{K}=\mathcal{F}$ (all arms are free), the regret reduces $O(1)$.

Free Exploration: Analysis (2/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

Free Exploration: Analysis (2/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Regret due to free arms in \mathcal{F}

2 Regret due to non-free arms in $\mathcal{K} \backslash \mathcal{F}$

Free Exploration: Analysis (2/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Regret due to free arms in \mathcal{F}
■ Finite \# time slots $\underbrace{\left\{I_{t}^{(m)}: m \in \mathcal{M}\right\}}_{\text {estimated free arm set }} \neq \underbrace{\mathcal{F}=\left\{k_{*}^{(m)}: m \in \mathcal{M}\right\}}_{\text {true free arm set }} \Longrightarrow$ Finite regret
2 Regret due to non-free arms in $\mathcal{K} \backslash \mathcal{F}$

Free Exploration: Analysis (2/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Regret due to free arms in \mathcal{F}
■ Finite \# time slots $\underbrace{\left\{I_{t}^{(m)}: m \in \mathcal{M}\right\}}_{\text {estimated free arm set }} \neq \underbrace{\mathcal{F}=\left\{k_{*}^{(m)}: m \in \mathcal{M}\right\}}_{\text {true free arm set }} \Longrightarrow$ Finite regret
2 Regret due to non-free arms in $\mathcal{K} \backslash \mathcal{F}$
■ $\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \sum_{m \in \mathcal{M}} \Delta^{(m)}(k) n_{T}^{(m)}(k)$ and $\sum_{m \in \mathcal{M}} n_{T}^{(m)}(k) \leqslant \frac{\log T}{(\tilde{\Delta}(k))^{2}} \nRightarrow \frac{\log T}{\tilde{\Delta}(k)}$ regret

Free Exploration: Analysis (2/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Regret due to free arms in \mathcal{F}
■ Finite \# time slots $\underbrace{\left\{I_{t}^{(m)}: m \in \mathcal{M}\right\}}_{\text {estimated free arm set }} \neq \underbrace{\mathcal{F}=\left\{k_{*}^{(m)}: m \in \mathcal{M}\right\}}_{\text {true free arm set }} \Longrightarrow$ Finite regret
2 Regret due to non-free arms in $\mathcal{K} \backslash \mathcal{F}$

- $\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \sum_{m \in \mathcal{M}} \Delta^{(m)}(k) n_{T}^{(m)}(k)$ and $\sum_{m \in \mathcal{M}} n_{T}^{(m)}(k) \leqslant \frac{\log T}{(\tilde{\Delta}(k))^{2}} \nRightarrow \frac{\log T}{\tilde{\Delta}(k)}$ regret

■ $\sigma(\ell)$: sort agents in a descending order based on the magnitude of $\Delta^{(m)}(k)$

Free Exploration: Analysis (2/2)

Theorem (FreeExp's Regret Upper Bound)

$$
\mathbb{E}\left[\mathrm{R}_{\mathrm{T}}(\mathcal{A})\right] \leqslant O\left(\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \frac{\log T}{\tilde{\Delta}(k)}\right)+O\left(\sum_{k \in \mathcal{F}} 1\right)
$$

1 Regret due to free arms in \mathcal{F}
■ Finite \# time slots $\underbrace{\left\{I_{t}^{(m)}: m \in \mathcal{M}\right\}}_{\text {estimated free arm set }} \neq \underbrace{\mathcal{F}=\left\{k_{*}^{(m)}: m \in \mathcal{M}\right\}}_{\text {true free arm set }} \Longrightarrow$ Finite regret
2 Regret due to non-free arms in $\mathcal{K} \backslash \mathcal{F}$
■ $\sum_{k \in \mathcal{K} \backslash \mathcal{F}} \sum_{m \in \mathcal{M}} \Delta^{(m)}(k) n_{T}^{(m)}(k)$ and $\sum_{m \in \mathcal{M}} n_{T}^{(m)}(k) \leqslant \frac{\log T}{(\tilde{\Delta}(k))^{2}} \nRightarrow \frac{\log T}{\tilde{\Delta}(k)}$ regret
■ $\sigma(\ell)$: sort agents in a descending order based on the magnitude of $\Delta^{(m)}(k)$

- $\sum_{\ell=1}^{L} n_{T}^{(\sigma(\ell))}(k) \leqslant \frac{\log T}{\left(\Delta^{(\sigma(L))}(k)\right)^{2}} \stackrel{\text { Abel's summation }}{\Longrightarrow} \sum_{\ell=1}^{L} \Delta^{(\sigma(\ell))}(k) n_{T}^{(\sigma(\ell))}(k) \leqslant \frac{C \log T}{\Delta^{(\sigma(L))}(k)}$

Simulations (1/2): FreeExp vs. Baselines

(a) Case (1)

(b) Case (2)

Figure 2: FreeExp vs. baselines

- Although with tighter theoretical performance, the empirical performance of FreeExp is not as good as CO-KL-UCB.

Simulations (2/2): Vary parameters of MA2B-HR

(a) Vary \# local arms

(b) Vary \# agents

(c) Vary \% of free arms

Figure 3: Vary parameters of MA2B-HR

■ In Figure (c), the more free arms, the better regret of FreeExp.

Conclusion

1 Discover the free exploration mechanism in multi-agent bandits with action constraints model.
2 Propose a new regret lower bound, echoing the free exploration mechanism.
3 Devise the FreeExp algorithm utilizing the free exploration mechanism.
4 Prove that FreeExp's regret upper bound tightly matches the lower bound.
5 Conduct simulations to validate FreeExp's empirical performance.

Conclusion

1 Discover the free exploration mechanism in multi-agent bandits with action constraints model.
2 Propose a new regret lower bound, echoing the free exploration mechanism.
3 Devise the FreeExp algorithm utilizing the free exploration mechanism.
4 Prove that FreeExp's regret upper bound tightly matches the lower bound.
5 Conduct simulations to validate FreeExp's empirical performance.

Future works:
■ Fairness among heterogeneous agents?
■ Reduce communications from $O(T)$ to $O(\log T)$?

Thank you!

Full paper at openreview.net/pdf?id=8kKEz1bnIEp

References I

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3(Nov):397-422, 2002.

Lin Yang, Yu-Zhen Janice Chen, Mohammad Hajiesmaili, John C.S. Lui, and Don Towsley. Distributed bandits with heterogeneous agents. In In Proceedings of The IEEE International Conference on Computer Communications 2022, 2022.

