
Exploration for Free: How Does Reward Heterogeneity
Improve Regret in Cooperative Multi-agent Bandits?

Xuchuang Wang1, Lin Yang2, Yu-Zhen Janice Chen3, Xutong Liu1,
Mohammad Hajiesmaili3, Don Towsley3, John C.S. Lui1

To Appear in UAI 2023

The Chinese University of Hong Kong1, Nanjing University2, University of Massachusetts Amherst3

July 27, 2023
1 / 15



Motivation Example for Action Constrained Multi-Agent Bandits

1 M Agents and K Arms (set K)
2 Each agent m has access

to a subset of arms K(m) ⊆ K
3 Overlap K(m) ∩ K(m′) leads

to cooperation.

2 / 15

(a) Drone swarm (b) Path routing

Agents have access to its nearby arms
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Action Constrained Multi-Agent Multi-Armed Bandits (1/2)

K arms: each associated with a Bernoulli variable Xt(k) with mean µ(k)
Assume µ(1) > · · · > µ(K ).

M Agents: each agent m has access to a subset of local arms K(m) ⊆ K

Local optimal arm k (m)
∗ := argmax

k∈K(m)

µ(k)

T Rounds: in each round t ⩽ T

Each agent m pulls an arm k (m)
t ∈ K(m) and collects reward X (m)

k (k (m)
t ).

3 / 15



Action Constrained Multi-Agent Multi-Armed Bandits (1/2)

K arms: each associated with a Bernoulli variable Xt(k) with mean µ(k)
Assume µ(1) > · · · > µ(K ).

M Agents: each agent m has access to a subset of local arms K(m) ⊆ K

Local optimal arm k (m)
∗ := argmax

k∈K(m)

µ(k)

T Rounds: in each round t ⩽ T

Each agent m pulls an arm k (m)
t ∈ K(m) and collects reward X (m)

k (k (m)
t ).

3 / 15



Action Constrained Multi-Agent Multi-Armed Bandits (1/2)

K arms: each associated with a Bernoulli variable Xt(k) with mean µ(k)
Assume µ(1) > · · · > µ(K ).

M Agents: each agent m has access to a subset of local arms K(m) ⊆ K

Local optimal arm k (m)
∗ := argmax

k∈K(m)

µ(k)

T Rounds: in each round t ⩽ T

Each agent m pulls an arm k (m)
t ∈ K(m) and collects reward X (m)

k (k (m)
t ).

3 / 15



Action Constrained Multi-Agent Multi-Armed Bandits (2/2)
Group regret with K arms M Agents T Rounds

E[RT(A)] :=
∑

m∈M

∑
t∈T

(µ(k (m)
∗ )− µ(k (m)

t ))︸ ︷︷ ︸
agent m’s regret

=
∑

m∈M

∑
t∈T

∆(m)(k)

=
∑

m∈M

∑
k∈K(m)

∆(m)(k)n(m)
T (k)

∆(m)(k) := µ(k (m)
∗ )− µ(k) is the reward gap of arm k with respect to agent

m’s local optimal arm k (m)
∗ .

n(m)
T (k) is the number of times that agent m pulls arm k till the end.
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Individual v.s. Cooperative: Algorithm Design
1 Individual UCB arm pull policy: at time t , agent m pulls

k (m)
t = argmax

k∈K(m)

UCB
(m)
t (k) = argmax

k∈K(m)

µ̂
(m)
t (k)︸ ︷︷ ︸

empirical mean

+

√
2 log t

n(m)
t (k)︸ ︷︷ ︸

confidence radius

,

where n(m)
t (k) is the number of times that agent m pulls arm k up to time t ,

and µ̂
(m)
t (k) is the average of these n(m)

t (k)’s observations.

2 Cooperative UCB arm pull policy: at time t , agent m pulls

k (m)
t = argmax

k∈K(m)

UCBt(k) = argmax
k∈K(m)

µ̂t(k)︸ ︷︷ ︸
empirical mean

global

+

√
2 log t
nt(k)︸ ︷︷ ︸

confidence radius
global

,

where nt(k) is the number of times that all M agents pull arm k up to time t ,
and µ̂t(k) is the average of these nt(k)’s observations.
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Individual v.s. Cooperative: Regret Analysis
1 Individual UCB’s regret:

E[RT(A)] ⩽ O

∑
m∈M

∑
k∈K(m)\{k (m)

∗ }

logT
∆(m)(k)

 ,

where ∆(m)(k) := µ(k (m)
∗ )− µ(k) is the reward gap of arm k with respect to

agent m’s local optimal arm.

2 Cooperative UCB’s regret:

How good?

E[RT(A)] ⩽ O

 ∑
k∈∪m∈M

(
K(m)\{k (m)

∗ }
)
logT
∆̃(k)

 ,

where ∆̃(k) := minm:k∈K(m) ∆(m)(k) is the smallest reward gap of local
suboptimal arm k with respect to any feasible agent m’s local optimal arm.
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Regret Lower Bound and Free Exploration Intuition (1/2)
E[RT(A)] =

∑
m∈M

∑
k∈K(m)

∆(m)(k)n(m)
T (k)

︸ ︷︷ ︸
regret of agent m

1 In single agent m’s bandit, to distinguish a suboptimal arm requires

n(m)
T (k) = Ω

(
logT

(∆(m)(k))2

)
pulls.

Therefore, Ω

 ∑
k∈K(m)

∆(m)(k)× logT
(∆(m)(k))2

 = Ω

 ∑
k∈K(m)

logT
∆(m)(k)

 regret lower

bound.

2 In cooperative multi-agent bandits, we need Ω

(
logT

(∆̃(k))2

)
pulls.

Therefore, Ω

(∑
k∈K

∆̃(k)× logT
(∆̃(k))2

)
= Ω

(∑
k∈K

logT
∆̃(k)

)
regret lower bound?
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Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: Ω

(∑
k∈K

∆(?)(k)× logT
(∆̃(k))2

)

2 May exist ∆(m)(k) = 0 if the arm k = k (m)
∗ is local optimal for some agent m.

3 Denote F := {k (m)
∗ : m ∈M} as arms can be freely explored.

Ω

 ∑
k∈K\F

logT
∆̃(k)


4 Cooperative UCB is not optimal.

K\F ⊆ ∪m∈M(K(m) \ {k (m)
∗ }) of Cooperative UCB’s upper bound.

8 / 15



Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: Ω

(∑
k∈K

∆(?)(k)× logT
(∆̃(k))2

)
2 May exist ∆(m)(k) = 0 if the arm k = k (m)

∗ is local optimal for some agent m.

3 Denote F := {k (m)
∗ : m ∈M} as arms can be freely explored.

Ω

 ∑
k∈K\F

logT
∆̃(k)


4 Cooperative UCB is not optimal.

K\F ⊆ ∪m∈M(K(m) \ {k (m)
∗ }) of Cooperative UCB’s upper bound.

8 / 15



Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: Ω

(∑
k∈K

∆(?)(k)× logT
(∆̃(k))2

)
2 May exist ∆(m)(k) = 0 if the arm k = k (m)

∗ is local optimal for some agent m.

3 Denote F := {k (m)
∗ : m ∈M} as arms can be freely explored.

Ω

 ∑
k∈K\F

logT
∆̃(k)



4 Cooperative UCB is not optimal.
K\F ⊆ ∪m∈M(K(m) \ {k (m)

∗ }) of Cooperative UCB’s upper bound.

8 / 15



Regret Lower Bound and Free Exploration Intuition (2/2)

1 Wait! Agents cooperate: Ω

(∑
k∈K

∆(?)(k)× logT
(∆̃(k))2

)
2 May exist ∆(m)(k) = 0 if the arm k = k (m)

∗ is local optimal for some agent m.

3 Denote F := {k (m)
∗ : m ∈M} as arms can be freely explored.

Ω

 ∑
k∈K\F

logT
∆̃(k)


4 Cooperative UCB is not optimal.

K\F ⊆ ∪m∈M(K(m) \ {k (m)
∗ }) of Cooperative UCB’s upper bound.

8 / 15



Key Contribution Illustrated: three arms µ(1) > µ(2) > µ(3)

µ(1) µ(2) µ(3)

Agent 1 ✓ ✓ ✓

Agent 2 p ✓ ✓

Agent 3 p p ✓

UCB [Auer, 2002]

O
((

1
∆(1,2) +

1
∆(1,3) +

1
∆(2,3)

)
logT

)

CO-UCB [Yang et al., 2022]

O
((

1
∆(1,2) +

1
∆(2,3)

)
logT

)

FreeExp (our work)

O(1)

1 K = F , all arms can be freely explored: FreeExp achieves constant regret.
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Free Exploration: Algorithm Design
Algorithm 1 The FreeExp Algorithm (for Agent m)

1: for each time slot t do
2: I(m)

t ← argmaxk∈K(m) µ̂t(k) ▷ identify empirical optimal arm

3: Send I(m)
t to other agents and collect their I(m

′)
t

4: D(m)
t ← {k ∈ K(m) : UCBt(k) > µ̂t(I

(m)
t )} ▷ choose high KL-UCB arms

5: D(m)
t ← D(m)

t \ {I(m
′)

t : ∀m′ ∈M} ▷ free exploration

6: if D(m)
t = ∅ then

7: J(m)
t ← I(m)

t ▷ exploit, if correct only agent m pulls k (m)
∗

8: else

9: J(m)
t ←

{
I(m)
t w.p. 1

2

uniformly pick an arm from D(m)
t w.p. 1

2

▷ explore

10: Pull arm J(m)
t and receive observations

11: Synchronize observations with other agents and Update µ̂t(k) and UCBt(k)
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t

4: D(m)
t ← {k ∈ K(m) : UCBt(k) > µ̂t(I

(m)
t )} ▷ choose high KL-UCB arms

5: D(m)
t ← D(m)

t \ {I(m
′)

t : ∀m′ ∈M} ▷ free exploration

6: if D(m)
t = ∅ then

7: J(m)
t ← I(m)

t ▷ exploit, if correct only agent m pulls k (m)
∗

8: else

9: J(m)
t ←

{
I(m)
t w.p. 1

2

uniformly pick an arm from D(m)
t w.p. 1

2

▷ explore

10: Pull arm J(m)
t and receive observations

11: Synchronize observations with other agents and Update µ̂t(k) and UCBt(k)
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Free Exploration: Analysis (1/2)
Theorem (FreeExp’s Regret Upper Bound)

E[RT(A)] ⩽ O

 ∑
k∈K\F

logT
∆̃(k)

+ O

(∑
k∈F

1

)

1 Theoretical improvement: summation range

(m × k) ∈ (M×K)︸ ︷︷ ︸
UCB [Auer, 2002]

=⇒ k ∈
⋃

m∈M
(K(m) \ {k (m)

∗ })︸ ︷︷ ︸
CO-UCB [Yang et al., 2022]

=⇒ k ∈ K \ F︸ ︷︷ ︸
FreeExp (ours)

2 Regret optimality: Match regret lower bound up to constant coefficients.

E[RT(A)] ⩾ Ω

 ∑
k∈K\F

logT
∆̃(k)

 “informal”

3 Finite regret in special case:
When K = F (all arms are free), the regret reduces O(1).
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Free Exploration: Analysis (2/2)
Theorem (FreeExp’s Regret Upper Bound)

E[RT(A)] ⩽ O

 ∑
k∈K\F

logT
∆̃(k)

+ O

(∑
k∈F

1

)

1 Regret due to free arms in F
Finite # time slots {I(m)

t : m ∈M}︸ ︷︷ ︸
estimated free arm set

̸= F = {k (m)
∗ : m ∈M}︸ ︷︷ ︸

true free arm set

=⇒ Finite regret

2 Regret due to non-free arms in K\F∑
k∈K\F

∑
m∈M

∆(m)(k)n(m)
T (k) and

∑
m∈M

n(m)
T (k) ⩽

logT
(∆̃(k))2

≠⇒ logT
∆̃(k)

regret

σ(ℓ): sort agents in a descending order based on the magnitude of ∆(m)(k)
L∑

ℓ=1

n(σ(ℓ))
T (k) ⩽

logT
(∆(σ(L))(k))2

Abel’s summation
=⇒

L∑
ℓ=1

∆(σ(ℓ))(k)n(σ(ℓ))
T (k) ⩽

C logT
∆(σ(L))(k)
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Simulations (1/2): FreeExp vs. Baselines

(a) Case (1) (b) Case (2)

Figure 2: FreeExp vs. baselines

Although with tighter theoretical performance, the empirical performance of
FreeExp is not as good as CO-KL-UCB.
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Simulations (2/2): Vary parameters of MA2B-HR

(a) Vary # local arms (b) Vary # agents (c) Vary % of free arms

Figure 3: Vary parameters of MA2B-HR

In Figure (c), the more free arms, the better regret of FreeExp.
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Conclusion

1 Discover the free exploration mechanism in multi-agent bandits with action
constraints model.

2 Propose a new regret lower bound, echoing the free exploration mechanism.
3 Devise the FreeExp algorithm utilizing the free exploration mechanism.
4 Prove that FreeExp’s regret upper bound tightly matches the lower bound.
5 Conduct simulations to validate FreeExp’s empirical performance.

Future works:
Fairness among heterogeneous agents?
Reduce communications from O(T ) to O(logT )?
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Thank you!

Full paper at openreview.net/pdf?id=8kKEz1bnIEp
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