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Abstract

Best arm identification (BAI) is a key problem in stochastic
multi-armed bandits, where 𝐾 arms each has an associated re-
ward distribution, and the objective is to minimize the number
of queries needed to identify the best arm with high confi-
dence. In this paper, we explore BAI using quantum oracles.
For the case where each query probes only one arm (𝑚 = 1),
we devise a quantum algorithm with a query complexity up-
per bound of 𝑂̃ (𝐾Δ−1 log(1/𝛿)), where 𝛿 is the confidence
parameter and Δ is the reward gap between best and second
best arms. This improves on the classical bound by a factor of
Δ−1. For the general case where a single query can probe 𝑚
arms (1 ⩽ 𝑚 ⩽ 𝐾) simultaneously, we propose an algorithm
with an upper bound of 𝑂̃ ((𝐾/

√
𝑚)Δ−1 log(1/𝛿)), improv-

ing by a factor of
√
𝑚 compared to the 𝑚 = 1 case. We also

provide query complexity lower bounds for both scenarios,
which match the upper bounds up to logarithmic factors, and
validate our theoretical results with Qiskit-based simulations.

1 Introduction
Best arm identification (BAI) is a fundamental problem
in the bandits and online learning communities (Audibert,
Bubeck, and Munos 2010; Bubeck, Munos, and Stoltz 2011;
Mannor and Tsitsiklis 2004). Given 𝐾 ∈ N+ arms, each
arm 𝑘 is associated with a reward distribution with unknown
mean 𝜇𝑘 , and the goal of BAI is to identify the arm with
the largest mean reward, with a confidence of 1− 𝛿, using as
few queries as possible. The number of queries required is
called the query complexity. Each query, in the classical set-
ting, corresponds to the learner pulling (sampling) one arm
and observing a reward drawn from the arm’s reward distri-
bution. As the learner only cares about finding the best arm,
the BAI problem is a pure exploration problem. BAI has
many real world applications, such as, clinical trials (Rob-
bins 1952), network routing (Barrachina-Muñoz and Bel-
lalta 2017), and crowdsourcing (Zhou, Chen, and Li 2014).

Recent progress in building quantum computers (Arute
et al. 2019; Chow, Dial, and Gambetta 2021) and quantum
networks (Wehner, Elkouss, and Hanson 2018; Azuma et al.
2022) has been encouraging, and wide applications of quan-
tum systems are envisaged in the near future. In these quan-
tum systems, BAI problems also emerge. For example, a
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quantum network may contain multiple channels between
source and destination nodes. Among these channels, one
may want to determine the “best” one, where “best” may re-
fer, for example, to the channel with the highest fidelity (Liu
et al. 2024) or with the lowest noise (Li, Deng, and Zhou
2008). Another example is in distributed quantum comput-
ing (Cacciapuoti et al. 2019), where different quantum com-
puters may have different performances when applied to the
same problem, and one wants to identify the quantum com-
puter that provides the best performance for a given task.
Although one can still apply classical BAI algorithms to
address these problems, we aim to show that the quantum
information feedback from these quantum systems can be
leveraged to improve the learning efficiency.

In this paper, we study the BAI problem in quantum sys-
tems, where the learner can query the arms using quantum
queries. More specifically, we study two key advantages of
quantum feedback in BAI: (1) quantum parallelism (Chuang
and Yamamoto 1995), and (2) quantum entanglement (Ein-
stein, Podolsky, and Rosen 1935). The quantum Monte
Carlo estimator (parallelism, Lemma 1) provides a more ef-
ficient estimator for the learner to estimate arm rewards. Ad-
ditionally, multi-qubit oracles with entangled quantum su-
perposition inputs enable the learner to query multiple arms
simultaneously (coherently) within a single query. We model
the former advantage by weak quantum oracles, one for
each arm, and the latter by a constrained quantum oracle
which can query several arms coherently (both detailed in
Section 2.2). When a constrained oracle can query all arms
coherently, we call it a strong quantum oracle.

The development of effective algorithms for both oracles
necessitates the use of quantum computing to manage quan-
tum information feedback and leverage quantum parallelism
and entanglement. However, obtaining a valid output from
a quantum computing subroutine, such as amplitude am-
plification (Brassard et al. 2002), typically demands mul-
tiple consecutive queries on the same arm or a subset of
arms for the constrained oracle. This characteristic renders
the classical BAI algorithm design and analysis ineffective
for BAI with quantum oracles. Consequently, it is impera-
tive to contemplate new algorithm designs and analyses for
BAI with quantum oracles. On the other hand, to investi-
gate the fundamental limit of quantum BAI problems, we
need to establish query complexity lower bounds. However,
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Table 1: Comparison of query complexity bounds with classical and quantum BAI

given that quantum information (including parallelism and
entanglement) offers more informative and inherently differ-
ent query feedback than classical BAI, the classical proofs
of BAI complexity lower bound are not applicable. Instead,
one needs to adapt quantum computation and quantum in-
formation approaches to examine quantum BAI problems.
Additionally, to empirically validate the performance of de-
vised algorithms for BAI with quantum oracles, one has to
utilize quantum circuits (Nielsen and Chuang 2002) and im-
plement the necessary quantum computation subroutines us-
ing basic quantum logic gates.

We summarize the key contributions of this paper as fol-
lows:

• For BAI with the weak quantum oracle, we derive a
query complexity lower bound Ω (∑𝑘 (1/Δ𝑘) log(1/𝛿)),
showing that no quantum algorithm can achieve a smaller
query complexity. Then, we propose an elimination-
based quantum algorithm (Q-Elim) and derive its query
complexity upper bound 𝑂̃ (∑𝑘 (1/Δ𝑘) log(1/𝛿)), where
the suboptimality gap Δ𝑘 := 𝜇1 − 𝜇𝑘 is the difference
in the mean rewards of the optimal arm and arm 𝑘 , and
𝑂̃ (·) hides poly-logarithmic factors. This implies that
Q-Elim is near-optimal up to logarithmic factors for
BAI with the weak quantum oracle (Section 3).

• For BAI with the 𝑚-constrained quantum oracle,
we propose a partition-based quantum algorithm
(Q-Part), and derive its query complexity upper bound

𝑂̃ (∑S∈𝔅 √︃∑
𝑘∈S 1/Δ2

𝑘
log (1/𝛿)), where 𝔅 is a partition

of the full arm set, i.e., a set of arm subsets, each subset
S containing 𝑚 arms. We also derive a query complex-

ity lower bound of Ω(∑S∈𝔅 √︃∑
𝑘∈S 1/Δ2

𝑘
) for the parti-

tion algorithm class, which matches the upper bound of
Q-Part up to logarithmic factors (Section 4).

• We implement our quantum algorithms using the IBM
Qiskit (Qiskit contributors 2023). We first corroborate
the superiority of our quantum algorithms over classical
BAI algorithms. We then evaluate our algorithms under
simulated quantum noise (Section 5).

Related Works Prior works on multi-armed bandits
(MAB) typically focus on regret minimization and BAI. This
paper focuses on the BAI setting (Even-Dar, Mannor, and
Mansour 2002; Even-Dar et al. 2006; Mannor and Tsitsiklis
2004). The BAI setting can be divided into two categories:
(1) BAIwith fixed confidence—find the best arm with a con-
fidence of at least 1 − 𝛿 (𝛿 ∈ (0, 1)) using as few samples

as possible (Bubeck, Munos, and Stoltz 2011); and (2) BAI
with fixed budget—given a fixed budget of 𝑄 queries, find
the best arm with as high a probability as possible (Karnin,
Koren, and Somekh 2013). In this paper, we focus on the
former category which, for brevity, we will refer to sim-
ply as the BAI problem. BAI with the strong quantum or-
acle was first studied by Casalé et al. (2020); Wang et al.
(2021), where they proposed a near-optimal quantum algo-
rithm that enjoys a quadratic speedup in query complexity.
We are the first to study the BAI problem with the weak
and constrained quantum oracles. Besides BAI, another ob-
jective, regret minimization in bandit theory, has also been
studied with quantum oracles, including Wan et al. (2023);
Dai et al. (2023); Wu et al. (2023), etc. We defer a more
detailed discussion of these works and other loosely related
works to Appendix A.

In Table 1, we summarize the key results in this pa-
per and compare them to prior works. Comparing the Δ𝑘-
dependence of the complexities, we have√︄∑︁

𝑘

1
Δ2
𝑘︸     ︷︷     ︸

Strong oracle

⩽
∑︁
S∈𝔅

√︄∑︁
𝑘∈S

1
Δ2
𝑘︸            ︷︷            ︸

𝑚-constrained oracle

⩽
∑︁
𝑘

1
Δ𝑘︸  ︷︷  ︸

Weak oracle

⩽
∑︁
𝑘

1
Δ2
𝑘︸  ︷︷  ︸

Classical oracle

(1)

All BAI problems with quantum oracles enjoy smaller query
complexities than the classical one. The query complexity of
the weak quantum oracle is worst among quantum oracles,
which is due to the fact that the weak oracle cannot exploit
quantum entanglement to probe multiple arms in parallel.
The query complexity of the 𝑚-constrained quantum oracle
lies between that of strong and weak oracles, and when 𝑚 =

1 (resp., 𝑚 = 𝐾) the complexity coincides with that of weak
(resp., strong) oracles.

2 Model
2.1 Preliminaries
Best arm identification (BAI). Consider a multi-armed
bandit (MAB) consisting of 𝐾 arms, where each arm 𝑘 ∈
K := {1, 2, . . . , 𝐾} is associated with a Bernoulli distribu-
tion B(𝜇𝑘) with mean 𝜇𝑘 ∈ (0, 1).1 An MAB instance is
determined by the mean rewards of its arms, and we denote
an instance I with means 𝜇1, . . . , 𝜇𝐾 as I := {𝜇1, . . . , 𝜇𝐾 }.

1More general distributions, such as sub-Gaussian or bounded
distributions, have also been considered in the MAB literature (Auer
and Ortner 2010; Lattimore and Szepesvári 2020).



For simplicity, we assume the 𝐾 arms are labeled in descend-
ing order of their means: 𝜇1 > 𝜇2 ⩾ . . . ⩾ 𝜇𝐾 , unknown to
the learner, and denote the mean reward (suboptimality) gap
as Δ𝑘 := 𝜇1 − 𝜇𝑘 for suboptimal arms 𝑘 > 1 and Δ1 := Δ2
for the optimal arm. We assume a unique optimal arm for
the simplicity of the later presentation of the algorithms and
analysis. One could extend the results to multiple optimal
arms with techniques in bandits literature, e.g., find an 𝜖-
optimal arm (Even-Dar, Mannor, and Mansour 2002). Then,
given confidence parameter 𝛿 ∈ (0, 1), the best arm iden-
tification (BAI) problem is to correctly output the best arm
with a probability of at least 1 − 𝛿 using as few queries as
possible, noted as the query complexity 𝑄.

Next, we present some basics notation from quantum
computation and information (Nielsen and Chuang 2002).

Bra-ket notation. We make use of bra-ket notation
to represent quantum states, where the “ket” |𝑥⟩ :=
(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ C𝑛 denotes a column vector of 𝑛 com-
plex numbers, while the “bra” ⟨𝑥 | := |𝑥⟩† = (𝑥∗1, 𝑥

∗
2, . . . , 𝑥

∗
𝑛),

a row vector, is the conjugate transpose of |𝑥⟩. For two quan-
tum states |𝑥⟩ , |𝑦⟩ ∈ C𝑛, their inner product is denoted as
⟨𝑥 |𝑦⟩ :=

∑𝑛
𝑖=1 𝑥

∗
𝑖
𝑦𝑖 ∈ C, and given another quantum state

|𝑧⟩ ∈ C𝑚, the tensor product between |𝑥⟩ and |𝑧⟩ is denoted
as |𝑥⟩ |𝑧⟩ = |𝑥⟩ ⊗ |𝑧⟩ := (𝑥1𝑧1, 𝑥1𝑧2, . . . , 𝑥𝑛𝑧𝑚) ∈ C𝑛 ⊗ C𝑚.

Qubit. A “qubit” is a two-level quantum system |𝜙⟩ =

(𝛼, 𝛽) ∈ C2, often written as |𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where
|0⟩ = (1, 0)𝑇 and |1⟩ = (0, 1)𝑇 are two basis states, and
𝛼, 𝛽 ∈ C are complex numbers, called amplitudes, satis-
fying |𝛼 |2 + |𝛽 |2 = 1. A measurement of the qubit in the
{|0⟩ , |1⟩} basis will give a ‘0’ with probability |𝛼 |2 and a
‘1’ with probability |𝛽 |2.

Quantum query model. In the quantum query model,
one has access to a black-box unitary operator (i.e., oracle)
which implements a given transformation. The objective is
to study the query complexity, i.e., the number of calls 𝑄
to the oracle needed to solve a given task; all other possi-
ble costs, e.g., gate complexity, are ignored. This is a com-
monly used model for studying quantum algorithms (Childs
2017, §20) and can be used, for instance, to obtain algo-
rithmic running time lower bounds (Klauck, Špalek, and
De Wolf 2007). In this paper, we study the query complexity
of best arm identification with fixed confidence under weak
and constrained quantum oracles.

2.2 Quantum Oracles
Before introducing the quantum oracles, we first recall the
classical oracle for the BAI problem. That is, when query-
ing an arm 𝑘 , one obtains a reward drawn from a Bernoulli
distribution B(𝜇𝑘) with unknown mean 𝜇𝑘 , i.e.,

𝑋𝑘 ∼ B(𝜇𝑘). (2)

We refer to (2) as the classical oracle.
In the quantum setting, the Bernoulli distributions can be

mapped to oracles O (𝑘 )weak (one for each 𝑘) that act as follows,

O (𝑘 )weak : |0⟩𝑅 ↦→
√︁

1 − 𝜇𝑘 |0⟩𝑅 +
√
𝜇𝑘 |1⟩𝑅 , (3)

where the register |·⟩𝑅 represents a single-qubit “bandit re-
ward” register with basis states |0⟩ and |1⟩. The output qubit
encodes the Bernoulli reward, meaning that if one measures
the output in the basis {|0⟩ , |1⟩}, the probability of observ-
ing |1⟩ is 𝜇𝑘 , while the probability of observing |0⟩ is 1−𝜇𝑘 .
We refer to (3) as the weak quantum oracle.

Note that directly measuring the output qubits reduces the
weak oracle to a Bernoulli distribution. However, aside from
direct measurement, the output qubits enable efficient quan-
tum parallelism through quantum computing algorithms,
which we elaborate in Section 3.

To harness the entanglement properties of quantum infor-
mation in real-world quantum systems, we consider a more
general quantum oracle that allows simultaneous querying
of multiple arms. In addition to the reward register |·⟩𝑅, we
introduce an “arm index” register |·⟩𝐼 , which has 𝐾 orthog-
onal basis states {|𝑘⟩𝐼 }𝐾𝑘=1, each corresponding to an arm.
A quantum state in the |·⟩𝐼 register can be expressed as∑𝐾
𝑘=1 𝑎𝑘 |𝑘⟩𝐼 , where 𝑎𝑘 ∈ C are the amplitudes of the arms,

and normalization requires that
∑𝐾
𝑘=1 |𝑎𝑘 |

2 = 1.
With the assistance of the arm index register, we define

a constrained quantum oracle that outputs states entangling
the arm index and reward registers. Assuming the oracle can
access 𝑚 ∈ {1, 2, . . . , 𝐾} arms simultaneously, for any sub-
set of arms S ⊆ K with |S| = 𝑚 and

∑
𝑘∈S |𝑎𝑘 |2 = 1, the

oracle is defined as follows:

O (S)cons :
∑︁
𝑘∈S

𝑎𝑘 |𝑘⟩𝐼 |0⟩𝑅

↦→
∑︁
𝑘∈S

𝑎𝑘 |𝑘⟩𝐼
(√︁

1 − 𝜇𝑘 |0⟩𝑅 +
√
𝜇𝑘 |1⟩𝑅

)
.

(4)

when 𝑚 = 1, the oracle reduces to the weak quantum oracle
in (3), and when 𝑚 = 𝐾 , it becomes the strong quantum
oracles as follows,

Ostro :
𝐾∑︁
𝑘=1

𝑎𝑘 |𝑘⟩𝐼 |0⟩𝑅

↦→
𝐾∑︁
𝑘=1

𝑎𝑘 |𝑘⟩𝐼
(√︁

1 − 𝜇𝑘 |0⟩𝑅 +
√
𝜇𝑘 |1⟩𝑅

)
.

(5)

The constrained quantum oracle in (4) is more powerful than
the weak oracle in (3) because it can access multiple arms
coherently in a single query, whereas the weak oracle only
allows access to one arm at a time. In Section 4, we present
a BAI algorithm using the 𝑚-constrained oracle, which out-
performs the weak oracle when 𝑚 > 1.

In practice, coherently querying a large number of chan-
nels may be technologically challenging, which motivates
the general 𝑚 ⩽ 𝐾 case. This limitation reflects a tech-
nology constraint where more options exist than can be ac-
cessed simultaneously. Such technological constraints may
also affect, for example, access to quantum states stored in
memory. In this case, a weak oracle would support individ-
ual calls to memory, while an𝑚-constrained oracle functions
like a dynamically loadable quantum random access mem-
ory (QRAM, see Appendix B), capable of querying multiple
entries at once.



3 BAI with Weak Quantum Oracle
In this section, we address the BAI problem using a weak
quantum oracle as described in (3). Querying this oracle for
arm 𝑘 yields the state

√︁
1 − 𝜇𝑘 |0⟩ +

√
𝜇𝑘 |1⟩. To estimate 𝜇𝑘

efficiently, we use the following lemma:

Lemma 1 (Performance of QuEst, adapted from Monta-
naro (2015); Grinko et al. (2021)). For a weak quantum or-
acle O (𝑘 )weak in (3), there exists a constant 𝐶1 > 1 and a quan-
tum estimation algorithm QuEst(O (𝑘 )weak, 𝜖 , 𝛿) that estimates
𝜇𝑘 with precision 𝜖 and confidence 𝛿 (i.e., P( | 𝜇̂𝑘 − 𝜇𝑘 | ⩾
𝜖) ⩽ 𝛿), using at most 𝐶1

𝜖
log 1

𝛿
queries.

This quantum estimator QuEst achieves a quadratic
speedup over the classical estimators that require
𝑂 ((1/𝜖2) log(1/𝛿)) queries. Unfortunately, QuEst lacks
flexibility: it does not generate any information before the
entire procedure has completed, unlike classical estimators
that improve estimates incrementally during the samples
arriving and allows for sample reuse.

To address this issue, we first use QuEst to develop a
batch-based elimination algorithm for BAI with the weak
quantum oracle in Section 3.1. We then establish an upper
bound on the query complexity of this algorithm in Sec-
tion 3.2. Finally, in Section 3.3, we present a lower bound
for any BAI algorithm using a weak quantum oracle, high-
lighting the fundamental limits of the task.

3.1 Algorithm Design

Algorithm 1 presents a quantum elimination algorithm
(Q-Elim) for BAI. The core idea of the elimination pro-
cess is to maintain a candidate arm set C (initially set to the
full arm set K), gradually identify and remove suboptimal
arms from C as learning progresses, and terminate when C
contains only one arm, which is then declared as the optimal
arm.

Although several classical elimination algorithms, such
as successive elimination (Even-Dar et al. 2006), have been
proposed for BAI using classical oracles, these cannot be di-
rectly adapted by simply replacing classical estimators with
the quantum estimator from Lemma 1 due to the rigidity of
the quantum estimator (one cannot acquire any information
from QuEst before the entire procedure completed).

A significant challenge in designing our quantum algo-
rithm is determining when to perform quantum estimation
QuEst and arm elimination. We address this by proposing
a batch-based exploration and elimination scheme, where
𝑗 ∈ {1, 2, . . . } denotes the batch number. In each batch,
we query all remaining arms in the candidate arm set C a
number of times depending on the batch number 𝑗 (Line 2),
conduct QuEst

(
O (𝑘 )weak, 2

− 𝑗 , 𝛿
2 𝑗 | C |

)
to estimate the mean re-

wards of arms in C based on the queries from this batch
(Line 3), and eliminate newly identified suboptimal arms
(Line 5) at the end of the batch. As 𝑗 increases, we pro-
gressively increase both the number of queries (Line 6) and
the estimation accuracy of QuEst (Lines 2 and 3).

Algorithm 1 Q-Elim: Quantum elimination algorithm for
BAI with weak quantum oracle

Input: fixed confidence parameter 𝛿 and number of arms 𝐾
Initialize: empirical mean 𝜇̂𝑘 ← 0, candidate arm set C ←
K, batch number 𝑗 ← 1

1: while |C| > 1 do
2: Query each arm 𝑘 ∈ C for 𝐶12 𝑗 log

(
2 𝑗 |C|/𝛿

)
times

3: Run QuEst
(
O (𝑘 )weak, 2

− 𝑗 , 𝛿
2 𝑗 | C |

)
for each arm 𝑘 in C

and update these arms’ estimates 𝜇̂𝑘
4: 𝜇̂max ← max𝑘∈C 𝜇̂𝑘
5: C ← C \ {𝑘 ∈ C : 𝜇̂𝑘 + 2 · 2− 𝑗 ⩽ 𝜇̂max} ⊲ Arm

elimination
6: 𝑗 ← 𝑗 + 1

Output: the single remaining arm in C.

3.2 Query Complexity Upper Bound for
Elimination Algorithm

Theorem 1 (Query complexity upper bound of Algo-
rithm 1). Given confidence parameter 𝛿 ∈ (0, 1), the query
complexity of Q-Elim is upper bounded as follows,

𝑄 ⩽
∑︁
𝑘∈K

log2

(
4
Δ𝑘

)
16𝐶1
Δ𝑘

log
𝐾

𝛿
,

where log is the natural logarithm, and log2 is the logarith-
mic function base 2.

Comparison with the query complexity lower bound
in Theorem 2 shows that our upper bound in Theo-
rem 1 is tight up to logarithmic factors. Compared to
the classical oracle sample complexity upper bound of
𝑂 (∑𝑘∈K (1/Δ𝑘)2 log(1/𝛿)) (Karnin, Koren, and Somekh
2013), the query complexity upper bound in Theorem 1 has a
quadratic improvement in the dependence on 1/Δ𝑘 for each
individual arm. In contrast, the strong quantum oracle sam-

ple complexity upper bound 𝑂̃ (
√︃∑

𝑘 1/Δ2
𝑘

log(1/𝛿)) (Wang
et al. 2021) achieves an overall quadratic speedup. That is,
as the first inequality of (1) shows, the coefficient of the
query complexity lower bound of the weak quantum oracle
is larger than that of the strong oracle, and is, in the worst
case,

√
𝐾 times larger.

3.3 Lower Bounds for BAI with weak quantum
oracle

Lastly, we present a query complexity lower bound for BAI
with a weak quantum oracle. This lower bound describes the
fundamental limits of the BAI task with a weak quantum
oracle and is independent of the specific algorithm used.
Theorem 2 (Query complexity lower bound for best arm
identification). Given a quantum multi-armed bandits in-
stance I0 = {𝜇1, . . . , 𝜇𝐾 } where 𝜇𝑘 ∈ (0, 1/2) for all 𝑘 and
𝜇1 > 𝜇2 ⩾ 𝜇𝑘 for any 𝑘 ≠ 1, any algorithm that identifies
the optimal arm with a given confidence 1 − 𝛿, 𝛿 ∈ (0, 1)
requires 𝑄 queries to the weak quantum oracle, where

𝑄 ⩾
∑︁
𝑘∈K

1
4Δ𝑘

log
1
4𝛿
.



Thus, to identify the best arm with confidence 1 − 𝛿, it
is necessary to pull each arm 𝑘 at least 1/(4Δ𝑘) log 1/(4𝛿)
times. The proof of this lower bound consists of two steps:
(1) apply the quantum hypothesis testing techniques to prove
a lower bound for the task of two arm identification, and
(2) extend the lower bound of the two-arm case to multi-
ple arms via adapting the lower bound proof of the classical
best arm identification. The detailed proof is presented in
Appendix F.

First, Theorem 2 demonstrates that the query complexity
of Q-Elim, as established in Theorem 1, is near-optimal
(up to some logarithm factors). Compared to the classical
oracle’s sample lower bound Ω

(∑
𝑘∈K

1
Δ2
𝑘

log 1
𝛿

)
(Mannor

and Tsitsiklis 2004), our lower bound shows a linear de-
pendence on 1/Δ𝑘 rather than quadratic. When compared to
the strong quantum oracle’s sample complexity lower bound

Ω

(√︃∑
𝑘

1
Δ2
𝑘

(1 −
√︁
𝛿(1 − 𝛿))

)
(Wang et al. 2021, Theorem

5), the weak oracle’s query complexity lower bound has a
larger coefficient, which can be up to

√
𝐾 times greater in

the worst case. However, our lower bound improves on the
dependence on 𝛿, as log(1/𝛿) is significantly larger than
1 −

√︁
𝛿(1 − 𝛿) when 𝛿 is small.

4 BAI with m-Constrained Quantum Oracle
In this section, we present a partition algorithm for BAIwith
the𝑚-constrained quantum oracle. We first present some key
subroutines in Section 4.1 on quantum computing, and then
present our algorithm in Section 4.2, followed by the algo-
rithm’s query complexity upper bound in Section 4.3, as well
as a lower bound for any partition algorithms in Section 4.4.

4.1 Key Quantum Subroutines
Variable-Time Algorithm Construction The variable-
time algorithm of Ambainis (2010); Wang et al. (2021) can
be used to transform an 𝑚-constrained quantum oracle with
a reward register |·⟩𝑅 into an oracle (VTA) that outputs a
state with a flag register |·⟩𝐹 which distinguishes arms with
large mean rewards from other arms. For an 𝑚-constrained
oracle O (S)cons and a subset S, VTA takes an interval 𝐼 = [𝑎, 𝑏]
with 0 < 𝑎 < 𝑏 < 1 and a parameter 𝛼 ∈ (0, 1) as inputs.
It divides S into three subsets: Sright := {𝑘 ∈ S : 𝜇𝑘 ⩾
𝑏 − 𝑏−𝑎

8 } (high rewards); Sleft := {𝑘 ∈ S : 𝜇𝑘 < 𝑏 − 𝑏−𝑎
2 }

(low rewards); Smiddle := S \ (Sright ∪ Sleft) (intermediate
rewards). The output state is:

VTA(O (𝑆)cons,S, 𝐼 = [𝑎, 𝑏], 𝛼) :
1
√
𝑚

∑︁
𝑘∈S
|𝑘⟩𝐼 |1⟩𝐹 →

1
√
𝑚

©­«
∑︁

𝑘∈Sright

|𝑘⟩𝐼 |1⟩𝐹 +
∑︁
𝑘∈Sleft

|𝑘⟩𝐼 |0⟩𝐹 +
∑︁

𝑘∈Smiddle

|𝑘⟩𝐼 |𝜙𝑘⟩𝐹
ª®¬ ,

(6)

where |·⟩𝐹 indicates the subsets Sright and Sleft with |1⟩𝐹
and |0⟩𝐹 respectively. Arms in Smiddle are represented by
|𝜙𝑘⟩𝐹 , with specific states depending on 𝛼 and the MAB
instance. The probability of observing |1⟩𝐹 is 𝑝good :=

1
𝑚

(��Sright
�� +∑

𝑘∈Smiddle
|𝛽𝑘 |2

)
, where 𝛽𝑘 depends on |𝜙𝑘⟩𝐹 .

The algorithm’s pseudocode is in Appendix C.1.

Amplitude amplification (Amplify) and amplitude esti-
mation (Estimate) The Amplify and Estimate are
two fundamental quantum computing algorithms (Brassard
et al. 2002). Amplify enhances the amplitude of a target
basis state, while Estimate estimates the amplitude of that
state. Since these algorithms are well-established, we omit
their pseudocode and direct interested readers to Brassard
et al. (2002) for details. In this work, we apply both algo-
rithms with the VTA oracle in (6), using |1⟩𝐹 as the target
state. The performance of Amplify and Estimate in this
context is discussed in Lemma 5 in Appendix C.1.

Good Ratio (GoodRatio) Subroutine The good ratio
subroutine is based on the variable-time algorithm (VTA)
and amplitude estimation (Estimate). It takes an 𝑚-
constrained oracle O (S)cons for a subset of arms S, an interval
𝐼 = [𝑎, 𝑏], and a confidence parameter 𝛿 as inputs, and out-
puts an estimate of the ratio of “good arms” in S, where the
“good arms” are the arms with mean reward greater than 𝑎
in the interval 𝐼. The subroutine is detailed in Algorithm 4
in Appendix C.2. Lemma 2 provides the subroutine’s perfor-
mance guarantees.
Lemma 2 (Performance of GoodRatio). Given an inter-
val 𝐼 = [𝑎, 𝑏] and a confidence parameter 0 < 𝛿 < 1,
there exists a GoodRatio(O (S)cons,S, 𝐼 = [𝑎, 𝑏], 𝛿) subrou-
tine which uses 𝑂 (𝐺) queries to output an estimate 𝑝good of
the “good arm” ratio 𝑝good such that

0.9
(
𝑝good −

0.1
𝑚

)
< 𝑝good < 1.1

(
𝑝good +

0.1
𝑚

)
with probability at least 1 − 𝛿, where the parameter 𝐺 :=√︃

1
(𝑏−𝑎)2 +

1
|Sright |

∑
𝑘∈Sleft∪Smiddle

1
(𝑏−𝜇𝑘 )2

polylog
(

𝑚
𝛿 (𝑏−𝑎)

)
.

Lemma 2 guarantees that GoodRatio provides a good
estimate of the ratio of good arms in the subset S with high
probability and with in a reasonable number of queries.

Partition Shrink (PartShrink) Subroutine The parti-
tion shrink subroutine takes as input the 𝑚-constrained ora-
cles O (𝑆)cons for each subset S in the partition set 𝔅, the parti-
tion set 𝔅 itself, an interval 𝐼, and parameters ℎ ∈ {1, 2} and
𝛿 ∈ (0, 1). The parameter ℎ = 1 (resp. ℎ = 2) directs the al-
gorithm to shrink the input interval 𝐼 so that the best arm 𝜇1
(resp. the second best arm 𝜇2) lies inside the output interval
𝐽. Utilizing a technique from quantum ground state prepara-
tion (Lin and Tong 2020), PartShrink divides the input
interval 𝐼 = [𝑎, 𝑏] into five sub-intervals of equal length and
outputs a new interval 𝐽 consisting of three consecutive sub-
intervals, as illustrated below:

Input Interval 𝐼:

Output
Interval 𝐽

:
case (0, 0)
cases (1, 0), (0, 1)
case (1, 1)

𝑎 𝑎 + 𝜖 𝑎 + 2𝜖 𝑎 + 3𝜖 𝑎 + 4𝜖 𝑏

Which case the output interval 𝐽 above corresponds to
depends on the input parameters and the mean reward



Algorithm 2 Q-Part: Partition Algorithm for BAI with
coherent query constrained 𝑚

Input: full arm setK, confidence parameter 𝛿, constraint 𝑚
Initialize: 𝛿← 𝛿/2, 𝐼1, 𝐼2 ← [0, 1], 𝛿′ ← 𝛿

1: Partition the full arm sets to ⌈𝐾/𝑚⌉ subsets, each with
𝑚 arms, together denoted as a set 𝔅
⊲ Stage (i): identify best arm subset

2: while min 𝐼1 −max 𝐼2 < 2|𝐼1 | or |𝔅| > 1 do
3: 𝐼1 ← PartShrink

(
(O (S)cons)∀S∈𝔅,𝔅, 𝐼1, 1, 𝛿′

)
4: 𝐼2 ← PartShrink

(
(O (S)cons)∀S∈𝔅,𝔅, 𝐼2, 2, 𝛿′

)
5: for S ∈ 𝔅 do
6: if GoodRatio

(
O (S)cons, 𝐼1, 𝛿

′
)
= 0 then

⊲ If no good arm inside subset S
7: 𝔅← 𝔅 \ S ⊲ Subset elimination
8: 𝛿′ ← 𝛿′/2 ⊲ Halve confidence parameter
9: ℓ1 ← min 𝐼1, ℓ2 ← max 𝐼2

10: S ← 𝔅 ⊲ Only remaining subset in 𝔅

⊲ Stage (ii): identify best arm
11: Construct variable-time quantum algorithm A ←

VTA(O (S)cons,S, 𝐼 = [ℓ2, ℓ1], 0.01𝛿)
12: 𝑘 ← Amplify(A, 𝛿′)
Output: arm 𝑘

of the arms in the interval 𝐼. We refer the detail to the
PartShrink subroutine in Algorithm 5 in Appendix C.3.
The performance guarantees are provided in Lemma 3.

Lemma 3 (Performance of PartShrink). Given ℎ ∈
{1, 2}, an interval 𝐼 = [𝑎, 𝑏], and a confidence parameter
0 < 𝛿 < 1, supposing 𝜇ℎ ∈ 𝐼 and |𝐼 | ⩾ Δ2/8, there exists a
PartShrink

(
(O (S)cons)∀S∈𝔅,𝔅, 𝐼, ℎ, 𝛿

)
subroutine which

1. outputs an interval 𝐽 with |𝐽 | = 3|𝐼 |/5 such that 𝜇ℎ ∈ 𝐽
with a probability of at least 1 − 𝛿, and

2. uses 𝑂
(∑
S∈𝔅

√︃∑
𝑘∈S

1
Δ2
𝑘

polylog
(

𝐾
𝑚𝛿Δ2

))
queries.

Lemma 3 guarantees that PartShrink outputs an inter-
val 𝐽 containing the mean reward 𝜇ℎ with high probability
and in a reasonable number of queries. The proofs of Lem-
mas 2 and 3 are presented in Appendix E.1.

Next, we present the partition algorithm for BAI with
the 𝑚-constrained quantum oracle that builds on the
GoodRatio and PartShrink subroutines.

4.2 Algorithm Design
This section presents the partition algorithm (Q-Part in
Algorithm 2) using the 𝑚-constrained quantum oracle. The
algorithm partitions 𝐾 arms into 𝐾/𝑚 subsets2 and queries
arms within each subset to find the optimal one.

Initially, Q-Part partitions the 𝐾 arms into 𝐾/𝑚 sub-
sets S1, . . . ,S𝐾/𝑚 (Line 1), each containing 𝑚 arms, and
denote 𝔅 := {S1, . . . ,S𝐾/𝑚}. The algorithm has two main

2If 𝐾/𝑚 is not an integer, add 𝑛 dummy arms (where 𝑛 < 𝑚) to
make 𝑚 | (𝐾 + 𝑛).

stages: (i) identifying the subset containing the optimal arm
(Lines 2-8) and (ii) finding the best arm within that subset
(Lines 9-12).

To find the optimal arm’s subset, Q-Part uses an elimi-
nation process. It starts with all subsets in 𝔅 and progres-
sively removes those without the best arm until one re-
mains. The algorithm maintains two intervals, 𝐼1 and 𝐼2,
both initialized to [0, 1]. Within the while loop (Line 2),
PartShrink is applied to shrink the intervals 𝐼1 and 𝐼2
(Lines 3-4). Then, GoodRatio checks each remaining sub-
set to see if it contains an arm with a mean reward in 𝐼1. If
not, the subset is eliminated (Line 7). The loop ends when
only one subset remains, and 𝐼1 and 𝐼2 are separated by a
gap of at least 2|𝐼1 | (i.e., min 𝐼1 −max 𝐼2 ⩾ 2|𝐼1 |).

Upon completion of Stage (i), Q-Part identifies the sub-
set containing the best arm, with 𝐼1 containing the mean
reward 𝜇1 of the best arm and 𝐼2 containing the mean re-
ward 𝜇2 of the second-best arm. The endpoints ℓ1 = min 𝐼1
and ℓ2 = max 𝐼2 separate the best arm from the rest
(Line 9). To find the optimal arm, Q-Part uses a variable-
time algorithm (VTA) in (6) with the remaining subset S
and interval [ℓ2, ℓ1] as inputs (Line 11), which produces
the expected output 1√

𝑚
( |𝑘∗⟩𝐼 |1⟩𝐹 +

∑
𝑘∈S\{𝑘∗ } |𝑘⟩𝐼 |0⟩𝐹).

Amplify then determines the index of the optimal arm 𝑘∗

(Line 12), which guarantees to output the best arm in the set
S with a probability of at least 1 − 𝛿′.

4.3 Query Complexity Upper Bound for Partition
Algorithm

We derive a query complexity upper bound for Q-Part (Al-
gorithm 2), and its detail proof is deferred to Appendix E.2.
Theorem 3 (Query complexity upper bound for Q-Part of
the𝑚-constrained quantum oracle). With confidence param-
eter 𝛿 ∈ (0, 1) and an arm partition 𝔅, the query complex-

ity of Algorithm 2 is 𝑂
(∑
S∈𝔅

√︃∑
𝑘∈S

1
Δ2
𝑘

polylog
(
𝐾
𝛿Δ2

))
,

where Δ𝑘 = 𝜇1 − 𝜇𝑘 is the reward gap of arm 𝑘 , and Δ2 is
the minimal reward gap.

As Δ2 is the smallest reward gap, Theorem 3 simpli-
fies the upper bound to 𝑂̃ ((𝐾/

√
𝑚)Δ−1

2 ). Thus, a smaller
𝑚 (better coherence) reduces the query complexity. When
𝑚 = 1 (weak quantum oracle), Q-Part’s complexity is
𝑂̃ (∑𝑘∈K Δ−1

𝑘
log 1

𝛿
), which matches Q-Elim’s bound for

a weak oracle (Theorem 2). However, Q-Elim’s bound
𝑂 (log 1

Δ
log 𝐾

𝛿
) is better than Q-Part’s polylogarithmic

factor𝑂 (polylog 𝐾
𝛿Δ2
) (at most log3 𝐾

𝛿Δ2
) because Q-Elim’s

parameters are optimized for weak oracles. When 𝑚 = 𝐾

(strong quantum oracle), Q-Part reduces to the algorithm
by Wang et al. (2021), as no further partitioning is needed
(𝔅 = {K}). For 1 < 𝑚 < 𝐾 , Q-Part’s complexity
lies between that of Wang et al. (2021)’s strong oracle and
Q-Elim’s weak oracle (see (1)).

4.4 Query Complexity Lower Bounds for the
m-Constrained Quantum Oracle

In Section 4.4, we establish lower bounds to demonstrate the
tightness and optimality of the Q-Part algorithm. The key



(a) SuccElim vs. Q-Elim (b) Q-Part with different 𝑚 (c) Impact of noise on Q-Part

Figure 1: Performance evaluation of Q-Elim and Q-Part. The results for Q-Part are based on taking the constant multi-
plicative prefactor from Lemma 5 to be 1. In reality this constant may be larger than 1 and thus the results for Q-Part and
Q-Elim are not directly comparable. Figure 1c is conducted for gap = 0.01 in a simulated 127-qubit quantum computer.

challenge is proving the lower bound with the outer summa-
tion over all subsets in 𝔅 (i.e.,

∑
S∈𝔅). This summation indi-

cates that queries on each subset are “orthogonal”, meaning
information gained from one subset does not overlap with
others. To address this, we define a class of partition algo-
rithms for 𝑚-constrained oracles, which ensures that queries
on one subset of arms cannot be used to infer information
about arms in any of the other subsets. We then derive a
lower bound for any partition algorithm, as stated in Theo-
rem 4, with a proof provided in Appendix G.2.

Definition 1 (Partition algorithm class). A partition algo-
rithm for BAI with the 𝑚-constrained oracle is one that par-
titions the full arm set into several subsets at initialization,
each with at most 𝑚 arms, and always follows this fixed par-
tition when querying arms during algorithm execution.

Theorem 4 (Query complexity lower bound for
𝑚-constrained oracle). To identify the best arm with a prob-
ability of at least 1 − 𝛿 with the 𝑚-constrained oracle with
parameter 𝑚, any partition algorithm needs to spend at least

the following number of queries, Ω(∑S∈𝔅 √︃∑
𝑘∈S 1/Δ2

𝑘
),

where 𝔅 is the partition of arms.

Note that Q-Part (Algorithm 2) belongs to this parti-
tion algorithm class, and if the arm partition 𝔅 in the lower
bound is the same as the one chosen in Q-Part, then this
lower bound matches the upper bound for Q-Part in The-
orem 3 up to some logarithmic factors. This implies that the
bounds in both Theorems 3 and 4 are tight, and Q-Part is
near-optimal within the partition algorithm class.

5 Qiskit-based Simulation
We compare the quantum algorithms Q-Elim (for the
weak quantum oracle) and Q-Part (for the 𝑚-constrained
quantum oracle) with the classical successive elimination
SuccElim (Even-Dar et al. 2006).

We set 𝛿 = 0.1 and 𝐾 = 8 arms with mean rewards rang-
ing from 0.99 − (𝑘 − 1) × Δ (where 𝑘 ∈ {1, . . . , 𝐾}) and
vary Δ from 0.11 to 0.01 in steps of 0.02 to analyze its
effect on query complexity. Details of the Qiskit imple-
mentation are in Appendix H, and the code is provided in

the supplementary material. We implement Q-Elim with
𝑚 = 1 and Q-Part with 𝑚 = 2, 4, and 8. For 𝑚 = 8, the
𝑚-constrained oracle is equivalent to the strong quantum or-
acle. The default confidence parameter for SuccElim is
𝑐 = 4 (Even-Dar et al. 2006). Results, averaged over 50 tri-
als, are shown in Figure 1.

Figure 1a (with y-axis in log-scale) shows that Q-Elim
outperforms SuccElim, demonstrating the benefits of
quantum information with the weak oracle. As Δ de-
creases, SuccElim’s query complexity increases faster
than Q-Elim’s, validating the quantum improvement of
dependence on Δ from Δ−2 to Δ−1 (see Appendix H for
curve-fitting). Figure 1b compares Q-Part’s performance
for 𝑚 = 2, 4, 8 as Δ varies. Increasing 𝑚 improves per-
formance, confirming the advantage of quantum parallelism
predicted by the 𝑂̃ ((𝐾/

√
𝑚)Δ−1) bound from Theorem 3.

We also assess the impact of noise using Qiskit’s sim-
ulation of IBM’s 127-qubit device. Figure 1c shows that
Q-Elim’s performance decreases by 2.38% and 8.09% for
𝑚 = 2 and 𝑚 = 4, respectively. For 𝑚=8, Q-Part fails due
to high noise, as the increased qubit and gate requirements
exceed practical limits, impairing the algorithm’s function-
ality. This highlights the importance to study the restrictive
𝑚-constrained quantum oracles under a noisy environment.

6 Conclusion
In this paper, we explore the best arm identification (BAI)
problem using weak and 𝑚-constrained quantum oracles.
We introduce the 𝑚-constrained oracle, which generalizes
both the weak oracle (𝑚 = 1) and the strong oracle (𝑚 = 𝐾).
Our quantum algorithms, Q-Elim for the weak oracle and
Q-Part for the constrained oracle, offer significant im-
provements over classical methods. Specifically, Q-Elim
achieves a quadratic speedup at the arm level due to quantum
parallelism, while Q-Part provides a quadratic speedup at
the subset level due to quantum entanglement. We estab-
lish query complexity lower bounds for both quantum BAI
problems that align with our upper bounds, indicating near-
optimal performance. Our experiments using Qiskit confirm
these theoretical results.



Acknowledgments
The work of Mohammad Hajiesmaili is supported by NSF
CNS-2325956, CAREER-2045641, CPS-2136199, CNS-
2102963, and CNS-2106299. The work of John C.S. Lui
is supported in part by SRFS2122-4S02. The work of
Don Towsley is supported in part by the NSF grant CNS-
1955744, NSF-ERC Center for Quantum Networks grant
EEC-1941583, and DOE Grant AK000000001829.

References
Ambainis, A. 2000. Quantum lower bounds by quantum
arguments. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing, 636–643.
Ambainis, A. 2010. Variable time amplitude amplification
and a faster quantum algorithm for solving systems of linear
equations. arXiv preprint arXiv:1010.4458.
Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.;
Barends, R.; Biswas, R.; Boixo, S.; Brandao, F. G.; Buell,
D. A.; et al. 2019. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574(7779):
505–510.
Audibert, J.-Y.; Bubeck, S.; and Munos, R. 2010. Best arm
identification in multi-armed bandits. In COLT, 41–53. Cite-
seer.
Auer, P.; and Ortner, R. 2010. UCB revisited: Improved re-
gret bounds for the stochastic multi-armed bandit problem.
Periodica Mathematica Hungarica, 61(1-2): 55–65.
Azuma, K.; Economou, S. E.; Elkouss, D.; Hilaire, P.; Jiang,
L.; Lo, H.-K.; and Tzitrin, I. 2022. Quantum repeaters: From
quantum networks to the quantum internet. arXiv preprint
arXiv:2212.10820.
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Appendix
The appendix is organized as follows:

• Appendix A provides an extended review of related
works.

• Appendix B explains the dynamically loadable quantum
random access memory (DL-QRAM) problem and how
it maps to the 𝑚-constrained quantum oracle.

• Appendix C describes the construction detail of the
variable-time quantum oracle VTA as well as the subrou-
tine details of GoodRatio and PartShrink.

• Upper bound proofs:

– Appendix D provides the proof of the query complex-
ity upper bound for the Q-Elim algorithm for the
weak quantum oracle.

– Appendix E provides the proof of the query complex-
ity upper bound for the Q-Part algorithm for the con-
strained quantum oracle.

• Lower bound proofs:

– Appendix F proves the query complexity lower bound
for the weak quantum oracle.

– Appendix G proves the query complexity lower bound
for the constrained quantum oracle.

• Appendix H provides the details of the Qiskit-based sim-
ulations and curve-fitting of the empirical performance
evaluation.

A Related Works
Wan et al. (2023) studied regret minimization with a weak
quantum oracle for both multi-armed bandits and linear ban-
dits, and devised regret minimization algorithms for both
cases with 𝑂 (log𝑇) and 𝑂 (log5/2 𝑇) upper bounds, respec-
tively. Dai et al. (2023) extended the results of Wan et al.
(2023) for linear bandits to (nonlinear) kernelized bandits
with weak oracles, Wu et al. (2023) extended the results
of Wan et al. (2023) to bandits with heavy-tailed rewards
with weak oracles, and Ganguly et al. (2023); Zhong et al.
(2023) studied regret minimization in reinforcement learn-
ing with weak quantum oracles. All of these works on weak
quantum oracles studied the regret minimization objective.
We believe our paper is the first to study the BAI problem
with a weak quantum oracle. Furthermore, we are also the
first to propose and study the 𝑚-constrained quantum or-
acle. Hamoudi (2021) provides a quantum mean estimator
for sub-Gaussian random variables, which could potentially
generalize the quantum Monte Carlo estimator (Lemma 1)
used in our paper for more general reward distributions.

Our proposed 𝑚-constrained quantum oracle in (4) is
novel. One related work is Grover and Radhakrishnan
(2005), where they studied the partial quantum search prob-
lem: first partition all items into multiple blocks, each con-
taining the same number of items, and then search which
among these blocks contains the marked item. The “partial
search” of Grover and Radhakrishnan (2005) aims to find a
block (or, subset) containing the marked item, and their ora-
cle is the same as the original one in Grover (1996). On the

other hand, the BAI problem with the 𝑚-constrained oracle
studied in this paper aims to find the best arm (the marked
item) with a novel constrained oracle.

Other interdisciplinary works involving multi-armed ban-
dits and quantum computation include (Lumbreras, Haa-
pasalo, and Tomamichel 2022; Brahmachari, Lumbreras,
and Tomamichel 2023; Ohno 2023; Buchholz, Kübler, and
Schölkopf 2023; Naruse et al. 2019; Cho et al. 2022). For
example, Lumbreras, Haapasalo, and Tomamichel (2022);
Brahmachari, Lumbreras, and Tomamichel (2023) applied
classical bandit algorithms to learn properties of quantum
states and recommend quantum states. Ohno (2023) applied
quantum maximization and amplitude encoding to speed up
the classical 𝜖-greedy algorithm in MAB. Cho et al. (2022)
proposed quantum amplitude amplification exploration al-
gorithm for adversarial MAB. Naruse et al. (2019) built a
physical quantum system (based on photons) to implement
classical MAB algorithms. Li and Zhang (2022) studies quan-
tum speedup for optimizing approximately convex functions
with bandit feedback. While both their work and ours aim to
identify the best arm, their continuous convex setting is fun-
damentally different from our discrete action space, making
their techniques not directly applicable to our problem.

B Motivating Example of the m-Constrained
Quantum Oracle

While both the weak and strong quantum oracles were con-
sidered previously (Wang et al. 2021; Wan et al. 2023),
the 𝑚-constrained quantum oracle is introduced in this
work. Here we explain how, in addition to generalizing the
weak and strong quantum bandit oracles, the 𝑚-constrained
quantum oracle naturally captures an extension of quan-
tum random access memory (QRAM) (Giovannetti, Lloyd,
and Maccone 2008) that we call dynamically loadable
quantum random access memory (DL-QRAM). A standard
QRAM provides access to the contents of a classical array
(𝑥1, . . . , 𝑥𝑁 ) in quantum superpositions. However, for large
datasets, it is conceivable that only a subset of the classical
data can be read by any fixed-sized QRAM. Thus, prior to
querying the QRAM, a classical loading operation may be
needed to select the subset of data to be read in superpo-
sition. We formalize this by defining a (𝐾, 𝑚)-dynamically
loadable QRAM as consisting of the following:

1. A classical memory 𝑌 which can store 𝐾 𝑟-bit numbers
𝑦 = (𝑦1, . . . , 𝑦𝐾 ).

2. A classical memory 𝑋 which can store 𝑚 𝑟-bit numbers
𝑥 = (𝑥1, . . . , 𝑥𝑚), where 𝑚 ⩽ 𝐾.

3. A QRAM which can access the contents of 𝑋 in quantum
superposition, i.e., a unitary𝑈 such that

𝑈 | 𝑗⟩𝐼 |𝑏⟩𝐴 = | 𝑗⟩𝐼
��𝑏 ⊕ 𝑥 𝑗 〉𝐴 ,

where 𝐼 is a log𝑚-qubit index register, and 𝐴 is an 𝑟-
qubit ancillary register.

4. A set L := {𝐿0, 𝐿1, . . . , 𝐿(𝐾𝑚) } of classical memory load-

ing operations 𝐿𝑖 : {0, 1}𝑟𝑚 × {0, 1}𝑟𝐾 → {0, 1}𝑟𝑚 ×
{0, 1}𝑟𝐾 such that

(a) 𝐿0 (𝒙, 𝒚) = (𝒙, 𝒚) is the identity operation, and



(b) The indices 𝑖 ∈
{
1, 2, . . . ,

(𝐾
𝑚

)}
of 𝐿𝑖 correspond to

some indexing of the subsets of S𝑖 ⊆ {1, 2, . . . , 𝐾}
of cardinality 𝑚, and the operation 𝐿𝑖 (𝒙, 𝒚) populates
𝒙 with the set of elements 𝒙 (S𝑖 ) := {𝑦 𝑗 : 𝑗 ∈ S𝑖},
where 𝑦 𝑗 is the 𝑗-th element among the 𝐾 elements of
𝒚, while preserving relative ordering of elements. That
is, for S𝑖 = { 𝑗1, 𝑗2, . . . , 𝑗𝑚} where 𝑗1 < 𝑗2 < · · · <
𝑗𝑚, the operation 𝐿𝑖 works as follows,

𝐿𝑖 (𝒙, 𝒚) = ((𝑦 𝑗1 , 𝑦 𝑗2 , . . . , 𝑦 𝑗𝑚 ), 𝒚)
Then, a query to the DL-QRAM corresponds to the opera-
tion 𝑈 ◦ 𝐿 for the QRAM unitary 𝑈 and some 𝐿 ∈ L, and
the loading operation 𝐿 can vary across queries.

The 𝑚-constrained quantum oracle defined in (4) corre-
sponds to a (𝐾, 𝑚)-dynamically loadable QRAM where the
contents of 𝒚 are the values 𝝁 = (𝜇1, . . . , 𝜇𝐾 ), followed by
a conditional rotation (cRot) on the reward register 𝑅, con-
trolled by an ancillary register 𝐴. Denoting classical mem-
ory registers with square brackets, we have∑︁

𝑘∈S𝑖

𝑎𝑘 |𝑘⟩𝐼 |0⟩𝑅 |0⟩𝐴 [0]𝑋 [𝝁]𝑌

𝐿𝑖−→
∑︁
𝑘∈S𝑖

𝑎𝑘 |𝑘⟩𝐼 |0⟩𝑅 |0⟩𝐴 [𝜇𝑘 , ∀𝑘 ∈ S𝑖]𝑋 [𝝁]𝑌

𝑈−→
∑︁
𝑘∈S𝑖

𝑎𝑘 |𝑘⟩𝐼 |0⟩𝑅 |𝜇𝑘⟩𝐴 (omit classical registers hereon)

cRot−→
∑︁
𝑘∈S𝑖

𝑎𝑘 |𝑘⟩𝐼
(√︁

1 − 𝜇𝑘 |0⟩𝑅 +
√
𝜇𝑘 |1⟩𝑅

)
|𝜇𝑘⟩𝐴

𝑈†−→
∑︁
𝑘∈S𝑖

𝑎𝑘 |𝑘⟩𝐼
(√︁

1 − 𝜇𝑘 |0⟩𝑅 +
√
𝜇𝑘 |1⟩𝑅

)
|0⟩𝐴 .

Omitting the ancillary register 𝐴 and classical registers
𝑋,𝑌 , the above mapping is exactly a realization of the 𝑚-
constrained quantum oracle in (4).
Remark 1. As defined above, a DL-QRAM involves

(𝐾
𝑚

)
classical memory loading operations 𝐿𝑖 . However, in our
algorithm design in Section 4, we show that it is not nec-
essary to implement all

(𝐾
𝑚

)
possible corresponding queries,

and only ⌈𝐾/𝑚⌉ such 𝐿𝑖 operations suffice for our needs.

C Extended Algorithm Details
C.1 Variable-time algorithm construction
Algorithm 3 presents the pseudocode of variable-time algo-
rithm. With this algorithm, one can transfer the constrained
oracle to a VTA oracle in (6). In Lemma 4, we present the
property of the gapped amplitude estimation used in Line 4.
Lemma 4 (Gapped amplitude estimation (GAE) (Childs,
Kothari, and Somma 2017, Lemma 22) (Wang et al. 2021,
Corollary 2)). Given a weak quantum oracle O (𝑘 )weak with

O (𝑘 )weak |0⟩ =
√︁

1 − 𝜇𝑘 |0⟩ +
√
𝜇𝑘 |1⟩, there is a unitary proce-

dure GAE(𝜖, 𝛿; ℓ), making 𝑂 ( 1
𝜖

log 1
𝛿
) queries to O (𝑘 )weak and

(O (𝑘 )weak)
†, that on input (

√︁
1 − 𝜇𝑘 |0⟩𝑅+

√
𝜇𝑘 |1⟩𝑅) |0⟩𝐶 |0⟩𝑃 ,

prepares a state of the form

(
√︁

1 − 𝜇𝑘 |0⟩𝑅 +
√
𝜇𝑘 |1⟩𝑅) (𝛽0 |0⟩𝐶 |𝛾0⟩𝑃 + 𝛽1 |1⟩𝐶 |𝛾1⟩𝑃) ,

Algorithm 3 VTA(O (𝑆)cons,S, 𝐼, 𝛼) (Adapted from Wang et al.
(2021, Algorithm 1))

Input: Unified oracle O (𝑆)cons as in (4) with arm subset S;
interval 𝐼 = [𝑎, 𝑏] where 0 < 𝑎 < 𝑏 < 1; approximation
parameter 0 < 𝛼 < 1

Initialize: Δ← 𝑏 − 𝑎; ℎ← ⌈log 1
Δ
⌉ + 2; 𝛾 ← 𝛼

2ℎ𝑚3/2

1: Initialize state to 1√
𝑚

∑
𝑘∈S |𝑘⟩𝐼 (

√︁
1 − 𝜇𝑘 |0⟩ +√

𝜇𝑘 |1⟩)𝑅 |0⟩𝐶 |0⟩𝑃 |1⟩𝐹
2: for 𝑗 = 1, . . . , ℎ do
3: if registers 𝐶1, . . . , 𝐶 𝑗−1 are all in state |0⟩ then
4: Apply GAE(2− 𝑗 , 𝛾; 𝑏) on registers 𝑅,𝐶 𝑗 and 𝑃 𝑗
5: Apply controlled-not gate with control on register
𝐶 𝑗 and target on register 𝐹

6: if registers 𝐶1, . . . , 𝐶ℎ are in state |0⟩ then
7: Flip the bit stored in register 𝐶ℎ+1

where 𝛽0, 𝛽1 ∈ [0, 1] satisfy 𝛽2
0 + 𝛽

2
1 = 1 with 𝛽1 ⩽ 𝛿 if

𝑝 ⩾ ℓ − 𝜖 and 𝛽0 ⩽ 𝛿 if 𝑝 < ℓ − 2𝜖 .

C.2 Pseudocode of GoodRatio
We present the pseudocode of the GoodRatio algorithm in
Algorithm 4. GoodRatio estimates the good arm ratio for
the interval 𝐼 for each subset S in the partition 𝔅. The ratio
is denoted as 𝑟 (S) .

Algorithm 4 GoodRatio(O (S)cons,S, 𝐼, 𝛿)

Input: Oracle O (S)cons for the subset of arms S as in (4); in-
terval 𝐼; parameter 𝛿 ∈ (0, 1);

1: Construct variable-time quantum algorithms A ←
VTA(O (S)cons,S, 𝐼, 0.01𝛿)

Output: 𝑟 (S) ← Estimate(A, 𝜖 = 0.1, 𝛿)

C.3 Pseudocode of PartShrink
We present the pseudocode of the PartShrink algorithm
in Algorithm 5. GoodRatio is used in Line 3 and Line 4to
estimate the good arm ratios for the intervals (𝑎 + 𝜖, 𝑎 + 3𝜖)
and (𝑎 + 2𝜖, 𝑎 + 4𝜖), respectively, for each subset S in the
partition 𝔅. These ratios are denoted as 𝑟 (𝑆)

𝑖
for 𝑖 = 1, 2.

Then, Line 5 computes the union of the events 𝑟 (𝑆)
ℎ

> ℎ+0.5
𝑚+1

for all S ∈ 𝔅. The indicator of the union event 𝐵1 and 𝐵2
signifies whether there are arms within or to the right of the
intervals (𝑎 + 𝜖, 𝑎 + 3𝜖) and (𝑎 + 2𝜖, 𝑎 + 4𝜖), respectively.
Based on (𝐵1, 𝐵2), PartShrink then adjusts the interval
length.

D Upper Bound Proofs for BAI with Weak
Oracle (Theorem 1)

Theorem 1 (Query complexity upper bound of Algo-
rithm 1). Given confidence parameter 𝛿 ∈ (0, 1), the query



Algorithm 5 PartShrink
(
(O (S)cons)∀S∈𝔅,𝔅, 𝐼, ℎ, 𝛿

)
Input: Oracle O (S)cons as in (4) for each 𝑆 in 𝔅; partition set

𝔅; interval 𝐼=[𝑎, 𝑏]; parameter ℎ∈{1, 2} and 𝛿∈(0, 1)
Initialize: 𝜖 ← (𝑏 − 𝑎)/5, 𝛿← 𝛿/2

1: Append arm 0 with mean 1 to O (S)cons for all subsets of
arms S ∈ 𝔅; call the resulting oracles O (S∪{0})cons .

2: for S ∈ 𝔅 do
3: 𝑟

(𝑆)
1 ←GoodRatio(O (S∪{0})cons ,S∪{0}, 𝐼=(𝑎+𝜖, 𝑎+

3𝜖), 0.01𝛿)
4: 𝑟

(𝑆)
2 ←GoodRatio(O (S∪{0})cons ,S∪{0}, 𝐼=(𝑎 +

2𝜖, 𝑎 + 4𝜖), 0.01𝛿)
5: 𝐵1 ← 𝟙

{⋃
S∈𝔅

{
𝑟
(S)
1 > ℎ+0.5

𝑚+1

}}
, 𝐵2 ←

𝟙
{⋃
S∈𝔅

{
𝑟
(S)
2 > ℎ+0.5

𝑚+1

}}
6: switch (𝐵1, 𝐵2)
7: case (0, 0) : 𝐽 ← [𝑎, 𝑎 + 3𝜖]
8: case (0, 1) or (1, 0) : 𝐽 ← [𝑎 + 𝜖, 𝑎 + 4𝜖]
9: case (1, 1) : 𝐽 ← [𝑎 + 2𝜖, 𝑎 + 5𝜖]

Output: interval 𝐽

complexity of Q-Elim is upper bounded as follows,

𝑄 ⩽
∑︁
𝑘∈K

log2

(
4
Δ𝑘

)
16𝐶1
Δ𝑘

log
𝐾

𝛿
,

where log is the natural logarithm, and log2 is the logarith-
mic function base 2.

Proof of Theorem 1. Correctness: If all estimates of
QuEst are correct, i.e., 𝜇𝑘 ∈ ( 𝜇̂𝑘 − 2− 𝑗 , 𝜇̂𝑘 + 2−𝑝) for all
arms in C, then the algorithm outputs arm 1. Hence, we only
need to show the probability that any of these QuEst fail is
upper bounded by 𝛿.

In the 𝑗 th round, the probability that any of the |C| quan-
tum estimates fails is upper bounded by |C| × 2− 𝑗 𝛿

| C | = 2− 𝑗𝛿.
Therefore, the total failure probability over all rounds is up-
per bounded by

∑∞
𝑗=1 2− 𝑗𝛿 = 𝛿.

Query Complexity: Since failures of the QuEst proce-
dures are accounted for by the above fixed confidence, we
assume that 𝜇𝑘 ∈ ( 𝜇̂𝑘 − 2− 𝑗 , 𝜇̂𝑘 + 2− 𝑗 ) holds for all arms
in C, and derive an upper bound on the number of queries
needed by Q-Elim to output the optimal arm.

Consider a complete execution of Algorithm 1. Fix a sub-
optimal arm 𝑘 . Denote by 𝑠𝑘 the batch during which arm 𝑘

is eliminated. We show that this arm must have been elimi-
nated when 4·2− 𝑗 < Δ𝑘 . Otherwise, this arm is not removed,
which implies that

𝜇𝑘 +4 ·2− 𝑗
(𝑎)
⩾ 𝜇̂𝑘 +3 ·2− 𝑗

(𝑏)
⩾ 𝜇̂max +2− 𝑗 ⩾ 𝜇̂1 +2− 𝑗

(𝑐)
⩾ 𝜇1,

where inequalities is (𝑎) and (𝑐) are due to the confidence
interval 𝜇𝑘 ∈ ( 𝜇̂𝑘 − 2−𝑝 , 𝜇̂𝑘 + 2− 𝑗 ), and inequality (𝑏)
stems from the fact that the elimination condition of Line 5
does not hold. That is, if the arm is not eliminated, we have
4 · 2− 𝑗 ⩾ 𝜇1 − 𝜇𝑘 = Δ𝑘 , which contradicts 4 · 2− 𝑗 < Δ𝑘 .
Therefore, assuming the last batch that the arm 𝑘 is queried

is 𝑠𝑘 , we have 4 · 2−𝑠𝑘 ⩾ Δ𝑘 . After rearrangement, we have
2𝑠𝑘 ⩽ 4/Δ𝑘 . So, we can bound the number of queries to arm
𝑘 as follows,

𝑠𝑘∑︁
𝑗=1
𝐶12− 𝑗 log

𝐾

2− 𝑗𝛿
⩽ 𝐶1 log

2𝐾
𝛿

𝑠𝑘∑︁
𝑗=1

2 𝑗 ( 𝑗 + 1)

⩽ 𝐶1 log
2𝐾
𝛿
· (𝑠𝑘 + 1)2𝑠𝑘+1 ⩽ 𝐶1 log

2𝐾
𝛿

log2

(
4
Δ𝑘

)
16
Δ𝑘
.

Summing the number of queries over all arms concludes the
proof. □

E Upper Bound Proofs for BAI with
Constrained Oracle (Theorem 3)

Theorem 3 (Query complexity upper bound for Q-Part of
the𝑚-constrained quantum oracle). With confidence param-
eter 𝛿 ∈ (0, 1) and an arm partition 𝔅, the query complex-

ity of Algorithm 2 is 𝑂
(∑
S∈𝔅

√︃∑
𝑘∈S

1
Δ2
𝑘

polylog
(
𝐾
𝛿Δ2

))
,

where Δ𝑘 = 𝜇1 − 𝜇𝑘 is the reward gap of arm 𝑘 , and Δ2 is
the minimal reward gap.

The proof of Theorem 3 relies on two key properties of
PartShrink, captured in the lemma below.

E.1 Proof of Key Lemmas
In Lemma 5, we show the query complexity of applying the
variable-time algorithm to the Amplify and Estimate
subroutines.
Lemma 5 (Adapted from Wang et al. (2021, Lemma 3)). Let
A = VTA(O (𝑆)cons,S, 𝐼 = [𝑎, 𝑏], 𝛼). Then, Amplify(A, 𝛿)
uses𝑂 (𝐺) queries to output an index 𝑘 ∈ Sright∪Smiddle with
probability 1 − 𝛿, and Estimate(A, 𝜖 , 𝛿) uses 𝑂 (𝐺/𝜖)
queries to output an estimate 𝑝good of 𝑝good such that

(1 − 𝜖)
(
𝑝good −

0.1
𝑚

)
< 𝑝good < (1 + 𝜖)

(
𝑝good +

0.1
𝑚

)
with probability ⩾ 1 − 𝛿, where the parameter 𝐺 :=√︃

1
(𝑏−𝑎)2 +

1
|Sright |

∑
𝑘∈Sleft∪Smiddle

1
(𝑏−𝜇𝑘 )2

polylog
(

𝑚
𝛿 (𝑏−𝑎)

)
.

Next, we prove the key lemmas for the GoodRatio and
PartShrink subroutines.
Lemma 2 (Performance of GoodRatio). Given an inter-
val 𝐼 = [𝑎, 𝑏] and a confidence parameter 0 < 𝛿 < 1,
there exists a GoodRatio(O (S)cons,S, 𝐼 = [𝑎, 𝑏], 𝛿) subrou-
tine which uses 𝑂 (𝐺) queries to output an estimate 𝑝good of
the “good arm” ratio 𝑝good such that

0.9
(
𝑝good −

0.1
𝑚

)
< 𝑝good < 1.1

(
𝑝good +

0.1
𝑚

)
with probability at least 1 − 𝛿, where the parameter 𝐺 :=√︃

1
(𝑏−𝑎)2 +

1
|Sright |

∑
𝑘∈Sleft∪Smiddle

1
(𝑏−𝜇𝑘 )2

polylog
(

𝑚
𝛿 (𝑏−𝑎)

)
.

Proof of Lemma 2. This proof is a straightforward applica-
tion of Lemma 5 to the Estimate in Output of Algo-
rithm 4. □



Lemma 3 (Performance of PartShrink). Given ℎ ∈
{1, 2}, an interval 𝐼 = [𝑎, 𝑏], and a confidence parameter
0 < 𝛿 < 1, supposing 𝜇ℎ ∈ 𝐼 and |𝐼 | ⩾ Δ2/8, there exists a
PartShrink

(
(O (S)cons)∀S∈𝔅,𝔅, 𝐼, ℎ, 𝛿

)
subroutine which

1. outputs an interval 𝐽 with |𝐽 | = 3|𝐼 |/5 such that 𝜇ℎ ∈ 𝐽
with a probability of at least 1 − 𝛿, and

2. uses 𝑂
(∑
S∈𝔅

√︃∑
𝑘∈S

1
Δ2
𝑘

polylog
(

𝐾
𝑚𝛿Δ2

))
queries.

Proof of Lemma 3. The first part of this lemma is similar to
that of Lin and Tong (2020), and we refer the reader to its
proof.

For the second part of Lemma 3, we fix a subset S ∈
𝔅. We first recall the query complexity of Estimate in
Lines 3 and 4, which is√︄

1
(𝑏 − 𝑎)2

+ 1��Sright
�� ∑︁
𝑘∈Sleft∪Smiddle

1
(𝑏 − 𝜇𝑘)2

up to some polylog factors.
Next, we show the above cost is upper bounded by

𝑂̃ (
√︃∑

𝑘∈S
1
Δ2
𝑘

). With assumption |𝐼 | ⩾ Δ2/8, we have

𝑏 − 𝑎 = 3𝜖 = 3|𝐼 |/5 ⩾ 3Δ2/40, which implies 1/(𝑏 − 𝑎)2 =

𝑂 (1/Δ2
2). Also, note that

��Sright
�� > 1 because we appended

a dummy arm with mean 𝜇0 = 1 to arm set S in Line 1.
Next, we bound 1/(𝑏 − 𝜇𝑘)2 by 1/(𝜇1 − 𝜇𝑘)2 for any arm

𝑘 ∈ Sleft∪Smiddle. By the definition ofSleft∪Smiddle, we have
𝜇𝑘 < 𝑏 −Δ/8, that is, 𝑏 − 𝜇𝑘 > Δ/8. By the assumption that
𝜇ℎ ∈ 𝐼 and noticing 𝑏 ∈ 𝐼, we have |𝜇ℎ − 𝑏 | ⩽ |𝐼 | = 5Δ/2
for ℎ ∈ {1, 2}. If ℎ = 1, that implies |𝜇1 − 𝑏 | ⩽ |𝐼 | = 5Δ/2.
If ℎ = 2, that implies |𝜇2 − 𝑏 | ⩽ |𝐼 | = 5Δ/2, which further
suggests |𝜇1 − 𝑏 | ⩽ Δ2 + |𝜇2 − 𝑏 | ⩽ 20Δ + 5Δ/2 < 25Δ.
That is, regardless of whether ℎ = 1 or ℎ = 2, we always
have |𝜇1 − 𝑏 | < 25Δ. Therefore,

𝜇1 − 𝜇𝑘
𝑏 − 𝜇𝑘

= 1 + 𝜇1 − 𝑏
𝑏 − 𝜇𝑘

< 1 + 25Δ
Δ/8 = 201,

and so 1/(𝑏 − 𝜇𝑘)2 = 𝑂 (1/(𝜇1 − 𝜇𝑘)2), which proves the
second statement. □

E.2 Proof of Theorem 3
Subset-Level Elimination in Q-Part Algorithm: Our
Q-Part algorithm introduces a novel subset-level elimina-
tion mechanism for identifying the arm subset containing the
best arm (as seen in Lines 6, 7 and the GoodRatio sub-
routine). Unlike the strong oracle algorithm in Wang et al.
(2021), this design leverages the maintained reward mean
interval [𝐼2, 𝐼1] for the optimal and second-best arms, using
the upper bound 𝐼1 to eliminate subsets that do not contain
the optimal arm. By bridging information across different
subsets, this approach reduces unnecessary queries for sub-
optimal arms within subsets that lack the optimal arm.

Proof of Theorem 3. Let 𝐸 = {𝜇1 ∈ 𝐼1, 𝜇2 ∈
𝐼2 during the whole while loop} denote the event that inter-
val 𝐼1 always covers the mean reward of optimal arm, and
interval 𝐼2 for the second best arm during the execution of
Q-Part.

Correctness Correctly outputting the optimal arm relies
on (1) event 𝐸 holding, i.e., PartShrink works properly,
and (2) proper execution of Amplify in Line 12. Based on
Lemmas 3 and 5, and the iterative halving of confidence pa-
rameter in Line 6, the failure probability of both conditions
is at at most

∑
𝑛⩾1

𝛿
2𝑛 < 𝛿.

Query Complexity In this part of the proof, we assume
event 𝐸 holds. With Lemma 3, we know that the intervals
𝐼1 and 𝐼2 shrink by a factor of 3/5 in each iteration of the
while loop. Therefore, at the end of the (⌈log5/3 Δ

−1
2 ⌉ +3)-th

iteration, |𝐼𝑘 | ⩽ Δ2/4 for both 𝑘 = 1, 2. Then,

min 𝐼1 −max 𝐼2 > Δ2 − 2 × Δ2
4

=
Δ2
2
> 2|𝐼1 |,

which fulfills the first while-stop condition in Line 2. At the
same time, min 𝐼1 − max 𝐼2 > 2|𝐼1 | > 0 implies that the
interval 𝐼1 only contains one arm (the best one) among all
arms in the partition set 𝔅. Therefore, except for the subset
S ∋ 1, all other subsets S′ (≠ S) ∈ 𝔅 do not have arms
whose mean rewards lie in or on the right hand side of inter-
val 𝐼1. This guarantees that GoodRatio(O (S

′ )
cons , 𝐼1, 𝛿) = 0

for S′ ≠ S. So, the second while-stop condition in Line 2
would also be fulfilled on or before the (⌈log5/3 Δ

−1
2 ⌉ +3)-th

iteration.
By Lemma 3, the number of queries in Lines 2-8 is

upper bounded by 𝑂̃
(∑
S∈𝔅

√︃∑
𝑘∈S Δ

−2
𝑘

)
. The remaining

queries of Q-Part are from the Amplify subroutine for
the set of arms S in Line 12, which, by on Lemma 5, is

𝑜

(∑
S∈𝔅

√︃∑
𝑘∈S Δ

−2
𝑘

)
and can be ignored. □

F Lower Bound Proofs for BAI with Weak
Oracle

F.1 Preliminaries
In this section, we first start by reviewing a quantum hy-
pothesis testing lower bound (Lemma 6), and then apply
this lower bound to distinguish two quantum MAB models
(Lemma 7) in Section F.2. Then, in Section 3.3, based on
the previous two lower bounds, we derive a query complex-
ity lower bound for BAI with a weak quantum oracle (The-
orem 2). Last, we derive two lower bounds for BAI with
the 𝑚-constrained quantum oracle (Theorems 6 and 4) via
tailored quantum adversarial methods in Section 4.4.

F.2 Preliminary Lower Bounds
Quantum hypothesis testing (Holevo 2003, §2.2) aims to
solve the following problem: Given multiple copies of one
of two known quantum states, |𝜓0⟩ , |𝜓1⟩, determine which
of both states has been given.
Lemma 6 (Error probability lower bound for quantum pure
state hypothesis testing (Kargin 2005)). Given 𝑄 copies of
one of two pure quantum states, |𝜓0⟩ or |𝜓1⟩ (equal prior),
the error probability of deciding which state has been given
is

𝑝
(𝑄)
error ⩾

1
2

(
1 −

√︃
1 − |⟨𝜓0 |𝜓1⟩|2𝑄

)
.



Next, we extend the hypothesis testing of two quantum
pure states to distinguishing two quantum MAB instances
I0 = (𝜇 (0)1 , 𝜇

(0)
2 , . . . , 𝜇

(0)
𝐾
) and I1 = (𝜇 (1)1 , 𝜇

(1)
2 , . . . , 𝜇

(1)
𝐾
).

We consider the case where both instances have only one
arm ℓ that differ in their oracles:

O (0)
ℓ

: |0⟩ →
√︁

1 − 𝜇0 |0⟩ +
√
𝜇0 |1⟩ ,

O (1)
ℓ

: |0⟩ →
√︁

1 − 𝜇1 |0⟩ +
√
𝜇1 |1⟩ ,

that is, 𝜇 (0)
ℓ

= 𝜇0 ≠ 𝜇1 = 𝜇
(1)
ℓ

, and all other arm mean
rewards are the same, i.e., 𝜇 (0)

𝑘
= 𝜇

(1)
𝑘

for all arms 𝑘 ≠ ℓ.
Lemma 7 (Query complexity lower bound for distinguish-
ing two quantum MAB instances differing by exactly one
arm’s mean reward). Given 𝜇0, 𝜇1 ∈

(
0, 1

4

)
3, the number

of queries 𝑄 required to distinguish the quantum MAB in-
stances I0 and I1, with a probability of at least 1 − 𝛿, is
lower bounded by 𝑄 ⩾ 1

4 |𝜇0−𝜇1 | log 1
4𝛿 .

F.3 Proof of Lemma 7
Proof of Lemma 7. Step 1. Relax the task to quantum hy-
pothesis testing. We begin with an easier task than distin-
guishing two quantum MAB instances. We assume that the
mean reward parameters of both instances are known a pri-
ori, that is, the arm index ℓ whose mean reward differs in
instance I0 and I1 and the values of 𝜇0 and 𝜇1 are known.
To address this relaxed task, one only needs to pull arm ℓ and
test whether the mean reward of this arm is 𝜇0 or 𝜇1. We note
that with the above additional information, the task becomes
easier, and, hence, the query complexity lower bound of this
relaxed task also serves as a lower bound for the original
task.

Step 2. Calculate the query complexity lower bound
from the quantum hypothesis testing result. Let

√
𝜇0 =

sin 𝜃0 and
√
𝜇1 = sin 𝜃1 for 𝜃0, 𝜃1 ∈

(
0, 𝜋4

)
. We can rewrite

the quantum states as

|𝜓0⟩ :=
√︁

1 − 𝜇0 |0⟩ +
√
𝜇0 |1⟩ = cos 𝜃0 |0⟩ + sin 𝜃0 |1⟩ ,

|𝜓1⟩ :=
√︁

1 − 𝜇1 |0⟩ +
√
𝜇1 |1⟩ = cos 𝜃1 |0⟩ + sin 𝜃1 |1⟩ .

By Lemma 6, to differentiate both oracles with probability
at least 1 − 𝛿, one needs

𝛿 ⩾ 𝑝
(𝑄)
error ⩾

1
2

(
1 −

√︃
1 − |⟨𝜓0 |𝜓1⟩|2𝑄

)
.

After rearranging the above inequality, we have

𝑄 ⩾
log

(
1 − (1 − 2𝛿)2

)
2 log | ⟨𝜓0 |𝜓1⟩|

=
1

−2 log | ⟨𝜓0 |𝜓1⟩|
log

1
4𝛿(1 − 𝛿)

(7)
Algebraic calculations (see Appendix F.3) yield
log | ⟨𝜓0 |𝜓1⟩| −1 ⩽ (𝜃0 − 𝜃1)2/2 and |𝜇0 − 𝜇1 | ⩾
(𝜃0 − 𝜃1)2/4. Substituting both inequalities into (7)
concludes the proof. □

3This assumption is needed in the algebraic calculations in Ap-
pendix F.3, and such a constant constraint assumption is common
for lower bound results because one often needs addition condi-
tions to construct difficult instances, e.g., Mannor and Tsitsiklis
(2004, Theorem 1).

Algebraic Details of Proof of Lemma 7 We first prove
that log | ⟨𝜓0 |𝜓1⟩| −1 ⩽ (𝜃0−𝜃1 )2

2 as follows.

log | ⟨𝜓0 |𝜓1⟩| = log(cos(𝜃0 − 𝜃1))
(𝑎)
⩾ log

(
1 − (𝜃0 − 𝜃1)2

2

)
(𝑏)
⩾ − (𝜃0 − 𝜃1)2

2
(8)

where inequality (a) is due to cos 𝑥 ⩾ 1 − 𝑥2

2 , and inequality
(b) is due to to log(1 − 𝑥) ⩾ −𝑥 for 𝑥 ∈ (0, 0.85).

Next, we upper bound |𝜇0 − 𝜇1 | with an expression of 𝜃0
and 𝜃1. With trigonometric identities, we have
𝜇0 − 𝜇1

= sin2 𝜃0 − sin2 𝜃1

= sin2 ((𝜃0 − 𝜃1) + 𝜃1) − sin2 𝜃1

= sin2 (𝜃0 − 𝜃1) cos2 𝜃1 + cos2 (𝜃0 − 𝜃1) sin2 𝜃1

+ 2 sin(𝜃0 − 𝜃1) cos(𝜃0 − 𝜃1) sin 𝜃1 cos 𝜃1 − sin2 𝜃1

= sin 𝜃1 cos 𝜃1 sin 2(𝜃0 − 𝜃1) + (1 − 2 sin2 𝜃1) sin2 (𝜃0 − 𝜃1).
Taking the absolute values of both sides, we obtain
|𝜇0 − 𝜇1 |

⩾
��(1 − 2 sin2 𝜃1) sin2 (𝜃0 − 𝜃1)

��−|sin 𝜃1 cos 𝜃1 sin 2(𝜃0 − 𝜃1) |
⩾

��(1 − 2 sin2 𝜃1) sin2 (𝜃0 − 𝜃1)
��

(𝑎)
⩾ | (1 − 2𝜇1) |

(𝜃0 − 𝜃1)2
4

(𝑏)
⩾
(𝜃0 − 𝜃1)2

8
(9)

where inequality (a) is due to sin 𝑥 ⩾ 𝑥
2 for 𝑥 ∈ (0, 1.8), and

inequality (b) is due to 𝜇1 ⩽ 1
4 .

Lastly, we conclude the proof as follows,

𝑄
(𝑎)
⩾

1
−2 log | ⟨𝜓0 |𝜓1⟩|

log
1

4𝛿(1 − 𝛿)
(𝑏)
⩾

1
(𝜃0 − 𝜃1)2

log
1

4𝛿(1 − 𝛿)
(𝑐)
⩾

1
8|𝜇0 − 𝜇1 |

log
1

4𝛿(1 − 𝛿)

⩾
1

8|𝜇0 − 𝜇1 |
log

1
4𝛿
,

where inequalities (a), (b), and (c) are due to (7), (8), and (9)
respectively.

F.4 Lower Bound Proof for BAI with Weak
Oracle (Theorem 2)

Theorem 2 (Query complexity lower bound for best arm
identification). Given a quantum multi-armed bandits in-
stance I0 = {𝜇1, . . . , 𝜇𝐾 } where 𝜇𝑘 ∈ (0, 1/2) for all 𝑘 and
𝜇1 > 𝜇2 ⩾ 𝜇𝑘 for any 𝑘 ≠ 1, any algorithm that identifies
the optimal arm with a given confidence 1 − 𝛿, 𝛿 ∈ (0, 1)
requires 𝑄 queries to the weak quantum oracle, where

𝑄 ⩾
∑︁
𝑘∈K

1
4Δ𝑘

log
1
4𝛿
.



Proof of Theorem 2. For every suboptimal arm 𝑘 ≠

1 in instance I0, we consider another instance I𝑘 =

{𝜇 (𝑘 )1 , . . . , 𝜇
(𝑘 )
𝐾
} whose mean rewards are the same as in in-

stance I0 except for the mean reward of arm 𝑘 which as-
sumes the form 𝜇

(𝑘 )
𝑘

= 𝜇1 + 𝜖 for 0 < 𝜖 < 1
2 − 𝜇1. Therefore,

in instance I𝑘 , the best arm is 𝑘 ≠ 1. Because instances I0
and I𝑘 have different best arms, any feasible policy must be
able to distinguish these two instances with a confidence of
at least 1 − 𝛿. Given the additional information that all other
arms have the same means, this task reduces to distinguish-
ing two instances I0 and I𝑘 as in Lemma 2. In particular,
from the proof of Lemma 2, we know that, in order to dis-
tinguish two MAB instances that only differ in arm 𝑘’s mean
reward, spending 1/(4(Δ𝑘 + 𝜖)) log 1/(4𝛿) queries on arm 𝑘

is necessary.
For the optimal arm 𝑘 = 1 in instance I0, we consider

another instance I1 = {𝜇 (1)1 , . . . , 𝜇
(1)
𝐾
} whose oracles are

the same as instance I0 except that the mean reward of arm
1 in I1 is 𝜇 (1)1 = 𝜇2 − 𝜖 for 0 < 𝜖 < 𝜇2 and recall that
arm 2 is the second best arm in I0. Therefore, in instance
I1, the best arm is 2. Similarly, Lemma 2 states that, to dis-
tinguish instances I0 and I1, it is necessary to pull arm 1
for (1/(4(Δ2 + 𝜖))) log 1/(4𝛿) = (1/(4(Δ1 + 𝜖)) log 1/(4𝛿)
times.

Last, summing the necessary query complexity spent
on each arm and letting 𝜖 go to zero yields 𝑄 ⩾∑
𝑘∈K 1/(4Δ𝑘) log 1/4𝛿). □

F.5 Alternative Lower bound Proof via quantum
adversary method for BAI with weak-oracle

In addition to Lemma 7 based on quantum hypothesis test-
ing, we provide an alternative lower bound based on the
quantum adversary method (Ambainis 2000).
Theorem 5. Given 𝜇0, 𝜇1 ∈ (𝜇, 1 − 𝜇), the necessary num-
ber of queries to distinguish the quantum MAB instances I0
and I1, with a probability of at least 1− 𝛿, has the following
lower bound,

𝑄 ⩾
1

|𝜇0 − 𝜇1 |
·

1 − 2
√︁
𝛿(1 − 𝛿)

1 + 2
√︁

1/𝜇(1 − 𝜇)
.

Replacing Lemma 7 by Theorem 5 in the proof of Theo-
rems 2, one can obtain another two query complexity lower
bounds for BAI as follows,

𝑄 ⩾
∑︁
𝑘∈K

1
Δ𝑘
·

1 − 2
√︁
𝛿(1 − 𝛿)

1 + 2
√︁

1/𝜇(1 − 𝜇)
.

Proof of Theorem 5. Without loss of generality we assume
𝜇1 > 𝜇0 and denote Δ = 𝜇1 − 𝜇0. For 𝑎 = 0, 1, denote���𝜓 (𝑡 )𝑎 〉

as the output after querying the oracle O𝑎 𝑡 times .
In the adversary method, we consider a weight function as
follows,

𝑠𝑡 =
1
Δ

〈
𝜓
(𝑡 )
0

���𝜓 (𝑡 )1

〉
.

Note that 𝑠0 = 1
Δ

and, to distinguish both oracles’ output
after 𝑇 queries, we require that 𝑠𝑇 ⩽ 1

Δ

√︁
2𝛿(1 − 𝛿).

After the 𝑡th query, we have���𝜓 (𝑡 )0

〉
= 𝛼0,0 |0⟩ + 𝛼0,1 |1⟩ ,

���𝜓 (𝑡 )1

〉
= 𝛼1,0 |0⟩ + 𝛼1,1 |1⟩ .

Denote the action of the quantum oracles by the following
two unitary matrices,

𝑨0 =

[√︁
1 − 𝜇0

√
𝜇0√

𝜇0 −
√︁

1 − 𝜇0

]
, 𝑨1 =

[√︁
1 − 𝜇1

√
𝜇1√

𝜇1 −
√︁

1 − 𝜇1

]
.

Then, we have〈
𝜓
(𝑡+1)
0

���𝜓 (𝑡+1)1

〉
−

〈
𝜓
(𝑡 )
0

���𝜓 (𝑡 )1

〉
=

〈
𝜓
(𝑡 )
0

���𝑨†0𝑨1

���𝜓 (𝑡 )1

〉
−

〈
𝜓
(𝑡 )
0

���𝜓 (𝑡 )1

〉
=

〈
𝜓
(𝑡 )
0

���𝑨†0𝑨1 − 𝑰
���𝜓 (𝑡 )1

〉
.

Denote[
𝑢 𝑣

−𝑣 𝑢

]
:= 𝑨†0𝑨1 − 𝑰

=

[√
𝜇0𝜇1 +

√︁
(1 − 𝜇0) (1 − 𝜇1) − 1√︁

𝜇0 (1 − 𝜇1) −
√︁
(1 − 𝜇0)𝜇1

√︁
(1 − 𝜇0)𝜇1 −

√︁
𝜇0 (1 − 𝜇1)√

𝜇0𝜇1 +
√︁
(1 − 𝜇0) (1 − 𝜇1) − 1

]
.

We have

|𝑠𝑡+1 − 𝑠𝑡 | ⩽
|𝑢 |
Δ2

��𝛼0,0𝛼1,0 + 𝛼0,1𝛼1,0
�� + |𝑣 |

Δ2

��𝛼0,0𝛼1,1 − 𝛼0,1𝛼1,0
��

(𝑎)
⩽
|𝑢 | + |𝑣 |

Δ2

(𝑏)
⩽

1 + 2
√︁

1/𝜇(1 − 𝜇)
Δ

,

where (a) is due to the Cauchy-Schwartz inequality, and (b)
is due to the fact that

|𝑢 | =
���1 − √𝜇0𝜇1 −

√︁
(1 − 𝜇0) (1 − 𝜇1)

���
⩽ |1 − 𝜇0 − (1 − 𝜇1) | = Δ,

|𝑣 | = 𝜇1 − 𝜇0√︁
(1 − 𝜇0)𝜇1 +

√︁
𝜇0 (1 − 𝜇1)

⩽
Δ

2
√︁
𝜇(1 − 𝜇)

.

At last, we have

1
Δ2

(
1 − 2

√︁
𝛿(1 − 𝛿)

)
⩽ |𝑠𝑇 − 𝑠0 | ⩽ 𝑇 ·

1 + 2
√︁

1/𝜇(1 − 𝜇)
Δ

.

Rearranging the above equation yields

𝑇 ⩾
1
Δ
·

1 − 2
√︁
𝛿(1 − 𝛿)

1 + 2
√︁

1/𝜇(1 − 𝜇)
.

□

G Lower Bound Proofs for BAI with
m-Constrained Oracle (Theorems 6 and 4)

In this section, we first prove a query complexity lower
bound for the𝑚-constrained oracle in Theorem 6 which suits
any quantum algorithm that uses the 𝑚-constrained oracle.
Then, we turn the prove an improved lower bound for parti-
tion algorithms (Definition 1) in Theorem 4 that is presented
in the main paper.



G.1 Proof of Theorem 6
Theorem 6 (Query complexity lower bound for
𝑚-constrained oracle (Version 1)). Given 𝜇𝑘 ∈ (𝑝, 1 − 𝑝)
for all arms 𝑘 ∈ K with 𝑝 ∈ (0, 1/2), identifying the best
arm with probability at least 1 − 𝛿 requires at least

Ω

( ∑︁
𝑘∈K

1
Δ2
𝑘

/
max
S: |S |=𝑚

√︄ ∑︁
𝑘′∈S

1
Δ2
𝑘′

)
queries to the 𝑚-constrained oracle.

Proof of Theorem 6. This proof is based on the quantum ad-
versarial method. We first construct instances and define the
weighted summations that are key components in configur-
ing the adversarial method. Next, we bound the difference
of any two consecutive weighted summations, which is the
central step in applying the adversarial method, and this step
needs tailoring to our 𝑚-constrained oracle setting as the
standard adversarial method assumes a strong oracle (i.e.,
allows one to query all arms/items concurrently).

Step 1. Construct instances and define weighted sum-
mation. We define 𝐾 instances as follows,

I1 = {𝜇1, 𝜇2, . . . , 𝜇𝐾 },
I2 = {𝜇1, 𝜇

′
1, . . . , 𝜇𝐾 },

. . .

I𝐾 = {𝜇1, 𝜇2, . . . , 𝜇
′
1},

where 𝜇1 > 𝜇2 > · · · > 𝜇𝐾 and 𝜇′1 = 𝜇1 + 𝜄 for some
parameter 𝜄 > 0. We also denote Δ′

𝑖
= 𝜇′1 − 𝜇𝑖 = Δ𝑖 + 𝜄 for

all 𝑖 ∈ {1, 2, . . . , 𝐾}. That is, in each instance I𝑖 , the arm 𝑖 is
optimal.

We define the weight summation for adversarial method
as follows,

𝑠𝑡 :=
𝐾∑︁
𝑖=1

1
(Δ′
𝑖
)2

〈
𝜓𝑖,𝑡

��𝜓1,𝑡
〉
,

where the summation is taken over all 𝐾 instances, and
��𝜓𝑖,𝑡 〉

is the superposition after 𝑡 times of 𝑚-constrained oracle
queries and other unitary operations for instance I𝑖 . As the
initial states

��𝜓𝑖,0〉 are the same, we have

𝑠0 =

𝐾∑︁
𝑖=1

1
(Δ′
𝑖
)2
.

As any of these two instances have different optimal arms,
to correctly identify the best arm, we need to be able to dis-
tinguish any two states

��𝜓𝑖,𝑇 〉 of different instances after the
last 𝑇 th query with a probability of at least 1 − 𝛿. Distin-
guishing two quantum states requires that

〈
𝜓𝑖,𝑇

��𝜓0,𝑇
〉

⩽

2
√︁
𝛿(1 − 𝛿) (Kaye, Laflamme, and Mosca 2006, Appendix

A.9). That is, the weight summation 𝑠𝑇 at the last query
should be bounded as follows,

𝑠𝑇 ⩽
∑︁
𝑘>1

1
Δ2
𝑘

· 2
√︁
𝛿(1 − 𝛿).

Step 2. Bound the difference of two consecutive
weighted summations. In this step, we upper bound the dif-
ference of two consecutive weighted summations, i.e.,

𝑠𝑡+1 − 𝑠𝑡 =
𝐾∑︁
𝑖=1

1
(Δ′
𝑘
)2

(〈
𝜓𝑖,𝑡+1

��𝜓0,𝑡+1
〉
−

〈
𝜓𝑖,𝑡

��𝜓0,𝑡
〉)
.

Denote

𝑨𝑘 =

[√︁
1 − 𝜇𝑘

√
𝜇𝑘√

𝜇𝑘 −
√︁

1 − 𝜇𝑘

]
,∀𝑘 ∈ K,

𝑨′1 =

[√︁
1 − 𝜇′1

√︁
𝜇′1√︁

𝜇′1 −
√︁

1 − 𝜇′1

]
as the unitary when querying arms 𝑘 ∈ K and the arm with
mean 𝜇′1 respectively. Denote

��𝜓𝑖,𝑡 〉 =
∑
𝑘,𝑟 𝛼𝑖,𝑘,𝑟 |𝑘, 𝑟⟩ and��𝜓1,𝑡

〉
=

∑
𝑘,𝑟 𝛼1,𝑘,𝑟 |𝑘, 𝑟⟩ where 𝑘 ∈ K is an index for arm

and 𝑟 ∈ {0, 1} is an index for reward. Then we have��𝜓𝑖,𝑡+1〉 = O (S𝑡+1 )cons,𝑖

��𝜓𝑖,𝑡 〉
=

∑︁
𝑘∈S𝑡+1\{𝑖},𝑟

𝛼𝑖,𝑘,𝑟 |𝑘⟩ 𝑨𝑘 |𝑟⟩ +
∑︁
𝑟

𝛼𝑖,𝑖,𝑟 |𝑖⟩ 𝑨′1 |𝑟⟩ 𝟙{𝑖 ∈ S𝑡+1},��𝜓1,𝑡+1
〉
= O (S𝑡+1 )cons,1

��𝜓1,𝑡
〉
=

∑︁
𝑘∈S𝑡+1 ,𝑟

𝛼1,𝑘,𝑟 |𝑘⟩ 𝑨𝑘 |𝑟⟩ .

Then, we have〈
𝜓𝑖,𝑡+1

��𝜓1,𝑡+1
〉
−

〈
𝜓𝑖,𝑡

��𝜓1,𝑡
〉

=
〈
𝜓𝑖,𝑡

�� (O (S𝑡+1 )cons,𝑖

)†
O (S𝑡+1 )cons,1

��𝜓1,𝑡
〉
−

〈
𝜓𝑖,𝑡

��𝜓1,𝑡
〉

=
∑︁
𝑟 ,𝑟 ′

𝛼∗𝑖,𝑖,𝑟𝛼1,𝑖,𝑟 ⟨𝑟 |
(
(𝑨′1)

†𝑨𝑖 − 𝑰
)
|𝑟 ′⟩ 𝟙{𝑖 ∈ S𝑡+1}.

Hence, we can calculate the consecutive difference as fol-
lows,

𝑠𝑡+1 − 𝑠𝑡 =
𝐾∑︁
𝑖=1

∑︁
𝑟 ,𝑟 ′

𝛼∗𝑖,𝑖,𝑟𝛼1,𝑖,𝑟 ⟨𝑟 |
(
(𝑨′1)

†𝑨𝑖 − 𝑰
)
|𝑟 ′⟩ 𝟙{𝑖 ∈ S𝑡+1}

=
∑︁
𝑖∈S𝑡+1

∑︁
𝑟 ,𝑟 ′

𝛼∗𝑖,𝑖,𝑟𝛼1,𝑖,𝑟 ⟨𝑟 |
(
(𝑨′1)

†𝑨𝑖 − 𝑰
)
|𝑟 ′⟩ .

The matrix in the middle is

(𝑨′1)
†𝑨𝑖 − 𝑰

=
©­«
√︃
(1 − 𝜇′1) (1 − 𝜇𝑖) +

√︃
𝜇′1𝜇𝑖 − 1

√︃
(1 − 𝜇′1)𝜇𝑖 −

√︃
𝜇′1 (1 − 𝜇𝑖)

−
√︃
(1 − 𝜇′1)𝜇𝑖 +

√︃
𝜇′1 (1 − 𝜇𝑖)

√︃
(1 − 𝜇′1) (1 − 𝜇𝑖) +

√︃
𝜇′1𝜇𝑖 − 1.

ª®¬
To simplify the remaining calculations, we denote 𝑢𝑖 =√︁
(1 − 𝜇′1) (1 − 𝜇𝑖) +

√︁
𝜇′1𝜇𝑖 − 1 and 𝑣𝑖 =

√︁
(1 − 𝜇′1)𝜇𝑖 −√︁

𝜇′1 (1 − 𝜇𝑖).
Then we can bound the absolute value of 𝑠𝑡+1 − 𝑠𝑡 as fol-

lows,

|𝑠𝑡+1 − 𝑠𝑡 | ⩽∑︁
𝑖∈S𝑡+1

(∑︁
𝑟=𝑟 ′

|𝑢𝑖 |
(Δ′
𝑖
)2

��𝛼𝑖,𝑖,𝑟 ����𝛼1,𝑖,𝑟
�� +∑︁

𝑟≠𝑟 ′

|𝑣𝑖 |
(Δ′
𝑖
)2

��𝛼𝑖,𝑖,𝑟 ����𝛼1,𝑖,𝑟
��)



It is easily verified that |𝑢𝑖 | ⩽ Δ′
𝑖

and |𝑣𝑖 | ⩽
Δ′
𝑖

2
√
(𝑝−𝜖 ) (1−(𝑝−𝜖 ) )

for 𝑝 ∈ (0, 1/2). Next, we bound the two

terms in the above inequality as follows,

∑︁
𝑖∈S𝑡+1

∑︁
𝑟=𝑟 ′

|𝑢𝑖 |
(Δ′
𝑖
)2

��𝛼𝑖,𝑖,𝑟 ����𝛼1,𝑖,𝑟
��

(𝑎)
⩽

√√√ ∑︁
𝑖∈S𝑡+1 ,𝑟=𝑟 ′

|𝑢𝑖 |4

(Δ′
𝑖
)4

���𝛼2
𝑖,𝑖,𝑟

���√︄ ∑︁
𝑖∈S𝑡+1 ,𝑟≠𝑟 ′

��𝛼1,𝑖,𝑟
��2

⩽

√︄ ∑︁
𝑖∈S𝑡+1

1
(Δ′
𝑖
)2
,

where inequality (a) is due to Cauchy-Schwarz inequality.

∑︁
𝑖∈S𝑡+1

∑︁
𝑟≠𝑟 ′

|𝑣𝑖 |
(Δ′
𝑖
)2

��𝛼𝑖,𝑖,𝑟 ����𝛼1,𝑖,𝑟
��

=
∑︁
𝑟≠𝑟 ′

∑︁
𝑖∈S𝑡+1

|𝑣𝑖 |
(Δ′
𝑖
)2

��𝛼𝑖,𝑖,𝑟 ����𝛼1,𝑖,𝑟
��

(𝑎)
⩽

∑︁
𝑟≠𝑟 ′

√√√ ∑︁
𝑖∈S𝑡+1

|𝑣𝑖 |2

(Δ′
𝑖
)4

��𝛼𝑖,𝑖,𝑟 ��2√︄ ∑︁
𝑖∈S𝑡+1

��𝛼1,𝑖,𝑟
��

⩽
1√︁

(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

√︄ ∑︁
𝑖∈S𝑡+1

1
(Δ′
𝑖
)2
,

where, again, we use Cauchy-Schwarz in (a).
Then, we have

|𝑠𝑡+1 − 𝑠𝑡 | ⩽
(
1 + 1√︁

(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

) √︄ ∑︁
𝑖∈S𝑡+1

1
(Δ′
𝑖
)2
.

Step 3. Combine Steps 1 and 2 to conclude query com-
plexity lower bound. We combine the results of Steps 1 and
2 to give:

𝐾∑︁
𝑖=1

1
(Δ′
𝑖
)2
(1 − 2

√︁
𝛿(1 − 𝛿))

(Step 1)
⩽ 𝑠0 − 𝑠𝑇

⩽ |𝑠0 − 𝑠1 | + · · · + |𝑠𝑇−1 − 𝑠𝑇 |
(Step2)
⩽

𝑇∑︁
𝑡=1

(
1 + 1√︁

(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

) √︄∑︁
𝑖∈S𝑡

1
(Δ′
𝑖
)2

⩽ 𝑇

(
1 + 1√︁

(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

)
· max
S: |S |=𝑚

√︄∑︁
𝑖∈S

1
(Δ′
𝑖
)2
.

Rearranging this inequality yields

𝑇 ⩾
1 − 2

√︁
𝛿(1 − 𝛿)

1 + 1/
√︁
(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

·

∑𝐾
𝑖=1

1
(Δ′
𝑖
)2

maxS: |S |=𝑚
√︃∑

𝑖∈S
1
(Δ′
𝑖
)2

Let 𝜖 = 𝑝(𝜇1 − 𝜇2)/2, we have

Δ𝑖 ⩽ Δ′𝑖 = 𝜇1 + 𝜖 − 𝜇𝑖 ⩽
(
1 + 𝑝

2

)
(𝜇1 − 𝜇𝑖) ⩽

5
4
Δ𝑖 ,

and √︁
(𝑝 − 𝜖) (1 − (𝑝 − 𝜖)) ⩾

√︂
𝑝

2

(
1 − 𝑝

2

)
.

Therefore, we have

𝑇 ⩾
16
25

1 − 2𝛿(1 − 𝛿)
1 + 1/

√︁
(𝑝/2) (1 − (𝑝/2))

∑𝐾
𝑖=1

1
Δ2
𝑖

maxS: |S |=𝑚
√︃∑

𝑖∈S
1
Δ2
𝑖

,

which concludes the proof.
□

G.2 Proof of Theorem 4

Theorem 4 (Query complexity lower bound for
𝑚-constrained oracle). To identify the best arm with a prob-
ability of at least 1 − 𝛿 with the 𝑚-constrained oracle with
parameter 𝑚, any partition algorithm needs to spend at least

the following number of queries, Ω(∑S∈𝔅 √︃∑
𝑘∈S 1/Δ2

𝑘
),

where 𝔅 is the partition of arms.

Proof of Theorem 4. The proof of Theorem 4 is also based
on the quantum adversarial method, and it has three steps as
that of Theorem 6. The first step in the instance construction
is the same. Below, we present Steps 2 and 3. Denote 𝔅 as
the partition of any algorithm and, for any S ∈ 𝔅, define the
following partial summation

𝑠
(S)
𝑡 =

∑︁
𝑖∈S

1
(Δ′
𝑖
)2

〈
𝜓𝑖,𝑡

��𝜓1,𝑡
〉
.

Then, we have 𝑠𝑡 =
∑
S∈𝔅 𝑠

(S)
𝑡 . In the proofs of Steps 2 and

3, we fix one subset of arms S ∈ 𝔅.
Step 2. Bound the difference of two consecutive

weighted summations. In this step, we upper bound the
difference of two consecutive weighted summations for the
subset of arms S, i.e.,

𝑠
(S)
𝑡+1 −𝑠

(S)
𝑡 = 𝟙{S = S𝑡+1}

∑︁
𝑖∈S

1
(Δ′
𝑘
)2

(〈
𝜓𝑖,𝑡+1

��𝜓0,𝑡+1
〉
−

〈
𝜓𝑖,𝑡

��𝜓0,𝑡
〉)
.

With similar derivation as the Step 2 proof of Theorem 6,
we have���𝑠 (S)

𝑡+1 − 𝑠
(S)
𝑡

���
⩽ 𝟙{S𝑡+1 = S}

(
1 + 1√︁

(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

) √︄∑︁
𝑖∈S

1
(Δ′
𝑖
)2

Step 3. Combine Steps 1 and 2 to conclude query com-
plexity lower bound. For the fixed subset of arms S, we



have ∑︁
𝑖∈S

1
(Δ′
𝑖
)2
(1 − 2

√︁
𝛿(1 − 𝛿))

(Step 1)
⩽ 𝑠

(S)
0 − 𝑠 (S)

𝑇

⩽
���𝑠 (S)0 − 𝑠 (S)1

��� + · · · + ���𝑠 (S)
𝑇−1 − 𝑠

(S)
𝑇

���
(Step2)
⩽

𝑇∑︁
𝑡=1

𝟙{S𝑡 = S}
(
1+ 1√︁
(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

)√︄∑︁
𝑖∈S𝑡

1
(Δ′
𝑖
)2

⩽ 𝑇 (S)
(
1 + 1√︁

(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

)
·
√︄∑︁
𝑖∈S

1
(Δ′
𝑖
)2
,

where we denote 𝑇 (S) :=
∑𝑇
𝑡=1 𝟙{S𝑡 = S} as the number of

times that the arm subset S is queried among 𝑇 rounds.
Rearranging this inequality yields

𝑇 (S) ⩾
1 − 2

√︁
𝛿(1 − 𝛿)

1 + 1/
√︁
(𝑝 − 𝜖) (1 − (𝑝 − 𝜖))

·
√︄∑︁
𝑖∈S

1
(Δ′
𝑖
)2

Then, with similar derivations as the Step 3 proof of The-
orem 6, we have

𝑇 (S) ⩾
16
25

1 − 2𝛿(1 − 𝛿)
1 + 1/

√︁
(𝑝/2) (1 − (𝑝/2))

√︄∑︁
𝑖∈S

1
Δ2
𝑖

.

Notice that 𝑇 =
∑
S∈𝔅 𝑇

(S) , we then prove the query com-
plexity lower bound as follows,

𝑇 ⩾
16
25

1 − 2𝛿(1 − 𝛿)
1 + 1/

√︁
(𝑝/2) (1 − (𝑝/2))

∑︁
S∈𝔅

√︄∑︁
𝑖∈S

1
Δ2
𝑖

.

□

H Detail of Qiskit Implementation of
Quantum Subroutines

For our quantum algorithms, we use the Qiskit Python
package (Qiskit contributors 2023) to implement all quan-
tum subroutines (QuEst, Amplify, and Estimate), ex-
cept for the VTA subroutine, which does not have a standard
Qiskit implementation. Instead, we use a simplified quan-
tum circuit that produces the same output as described in (6).
Consequently, when counting the query complexity contri-
bution from VTA, we use its theoretical upper bound from
Lemma 5 (with the constant coefficient hidden by the big-
O notation taken to be 1, noting that the constant may not
be exactly 1; the true performance of Q-Part could differ
from the numerical values presented by a multiplicative fac-
tor, making its numerical performance not directly compara-
ble with SuccElim and Q-Elim) and the polylog factor in
the expression for 𝐺 taken to be log

(
𝑚

𝛿 (𝑏−𝑎)

)
(the polyno-

mial degree of the logarithmic factor could potentially im-
pact the relative performance of Q-Part with different val-
ues of𝑚, compared to the values depicted in Figure 1b; how-
ever, in the asymptotic limit of small gap Δ or large number

(a) SuccElim vs. Q-Elim

(b) Q-Part with different 𝑚

Figure 2: Curve-fitting of the empirical performance eval-
uation of Q-Elim and Q-Part. The fitting curves are
𝑦 = 𝑎/𝑥2+𝑏 for SuccElim and 𝑦 = 𝑐/𝑥+𝑑 for the quantum
algorithms.

of arms 𝐾 , the relative order will agree with that illustrated
in Figure 1b).

To further illustrate the relation between the empirical
query times with our theoretical query complexity bounds,
we provide fitting curves for the empirical data in Figure 2.
For fitting, we used 𝑦 = 𝑎/𝑥2 + 𝑏 for the SuccElim (clas-
sical) plot and 𝑦 = 𝑐/𝑥 + 𝑑 for the quantum plots, where
𝑦 represents empirical sample/query counts, 𝑥 is the gap Δ,
and 𝑎, 𝑏, 𝑐, and 𝑑 are constants. Although we cannot include
new figures in the rebuttal, we report the 𝑅2 values (closer
to 1 indicates a better fit), and we will add these figures to
the final paper version.

In Figure 2a, the fitting curve for SuccElim achieved
𝑅2 = 0.9998, and for QElim, 𝑅2 = 0.9941. For Fig-
ure 2b, the 𝑅2 values for QElimwith𝑚 = 2, 4, 8 are 0.9159,
0.8854, and 0.9647, respectively. These results confirm that
the query complexity of the quantum algorithms indeed de-
pends on 1/Δ, aligning with our theoretical findings. The
slightly lower 𝑅2 values for Figure 2b are likely due to
the actual sample complexity bound of Q-Part, which in-
volves

∑
S∈𝔅

√︃∑
𝑘∈S

1
Δ2
𝑘

and depends on the arm partition

𝔅, approximating but not strictly matching 1/Δ dependence.


