

University of Massachúsetts Amherst

Multi-armed bandits & Adversarial attacks

K arms, each with a stochastic reward X_k with unknown mean μ_k $\blacktriangleright \Delta_k \coloneqq \mu_{k^*} - \mu_k$ where $k^* \coloneqq \arg \max \mu_k$

 \succ T sequential decision rounds.

 $\succ \text{Regret: } R_T \coloneqq T \mu_{k^*} - \sum_{t=1}^T \mu_{I_t}$ > Attack budget: $C \coloneqq \sum_{t=1}^{T} |X_{k,t} - \tilde{X}_{k,t}|$

Attack (above) vs. Corruption (below)

Learner pull arm I_t

Stochastic reward $X_{I_t,t}$ drawn from I_t

Stochastic reward $X_{k,t}$ drawn from all arms

The **adversary** chooses the corrupted reward $X_{k,t}$ for all arms

