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Multi-Armed Bandits

K arms: each associated with a Bernoulli variable Xt(k) with mean µ(k).
Assume µ(1) > · · · > µ(K ).

Given T decision rounds:
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Cooperative Multiple-Agent Multi-Armed Bandits
K arms: each associated with a Bernoulli variable Xt(k) with mean µ(k).

Assume µ(1) > · · · > µ(K ).

M Agents in t = 1, . . . ,T :

Each agent i pulls an arm and collects reward X (i)
k from pulled arms.

Group regret:

E[Rgro
T (A)] := MTµ(1)− E

[∑
i∈[M]

∑
t∈[T ]

X (i)
t (A(i)

t )

]
Full communication: E[Rgro

T (A)] = Θ(K logT )
No communication: E[Rgro

T (A)] = O(MK logT )

Communication costs:

E [CT(A)] := E
[∑

i∈[M]

∑
t∈[T ]

1{agent i communicates in time t}
]
.
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(a) Online advertising
with multiple servers

(b) Cloud computing
with multiple clients

(c) Clincal treatment
with multiple hospitals
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New Objective: Maximum Individual Regret

(a) Drone swarm (b) Path routing (c) Max-min fairness

Overall performance is sensitive to the “bad” agent.
Max-min fairness is equivalent to minimizing the “bottleneck” agent’s regret.

E[Rind
T (A)] := Tµ(1)− E

[
mini∈[M]

∑
t∈[T ]

X (i)
t (A(i)

t )

]
.
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Related Works and Contributions

Table 1: A comparison summary of prior literature and this work

Individual regret Group regret Communication cost

DPE2 [Wang et al., 2020] O(K logT ) O(K logT ) O(K 2M2)
ComEx [Madhushani and Leonard, 2021] O(K logT ) O(K logT ) O(KM logT )
GosInE [Chawla et al., 2020] O((K/M + 2) logT ) O((K + 2M) logT ) Ω(logT )
Dec_UCB [Zhu et al., 2021] O((K/M) logT ) O(K logT ) O(MT )

UCB-TCOM (our algorithm) O((K/M) logT ) O(K logT ) O(KM log(logT ))

1 The first near-optimal algorithm UCB-TCOM on individual regret with efficient
communications.

2 A communication policy TCOM that

(a) Meta policy: can be executed on top of any bandit algorithm;
(b) Tunable: can be tuned to trade off communications (0 to O(T )) with regrets.
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Tunable COMmunication TCOM (1/3): O(logT )
Focus on Suboptimal Arms’ Observation Sharing

IDEA: Share suboptimal arms’ obs., Yes! Share optimal arm, No.
share suboptimal arms’ observation⇒ reduce this arm’s #pulls⇒ save cost
share optimal arms’ observation⇒ reduce this arm’s #pulls⇒ increase cost

DESIGN: Construct a communication arm set Ct(α)

include the arms that are likely to be suboptimal.
only share new observations for arms in the set Ct(α).

6 / 14
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Tunable COMunication TCOM (2/3): O(logβ logT )
Dynamically Buffer Observations for Communication

IDEA: Regret only deteriorates up to a constant multiplier when the observation
delays increase geometrically [Gao et al., 2019].

DESIGN: Buffer observations and communicate whenever the buffered #obs
increases by a ratio β (> 1).

e.g., if the ratio β is 2, broadcast when Nt(k) = 2,4,8,16, . . .

7 / 14
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Tunable COMunication TCOM (3/3): E[Rind
T (A)] =

E[Rgro
T (A)]
M

Symmetric Actions for All Agents

IDEA: Minimize maximum individual regret
⇐⇒ Evenly divide group regret
⇐= In each time slot, all agents pull the same arm

DESIGN: Agents run the same arm-pulling policy and use the same set of global
observations (communicated to all agents).
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Algorithm 1 The UCB-TCOM Algorithm (for each agent)

1: Input: communication arm set parameter α and buffering ratio β

2: Initialization: n̂t(k) = 0,Nt(k) = 0, µ̂t(k) = 0, τt(k) = 0
3: for each decision round t do ▷ Parallelly run for-loops in Lines 3 and 12.

4: Pull arm At with the highest global UCB
5: Observe arm At ’s reward Xt(At)

6: if At ∈ Ct(α) then ▷ Pick suboptim arms for observation sharing
7: Increase Nt(At) by 1
8: Update this phase’s empirical mean µ̃t(At)

9: if Nt(At) ⩾
⌈
βNτt (At )(At)

⌉
then ▷ Buffer size increases geometrically.

10: Broadcast the message (µ̃t(At),Nt(At),At)
11: τt(At)← t

12: for each newly received message (µ̃t(k),Nt(k), k) from the past round do
13: Update the empirical mean µ̂t(k), n̂t(k), and the communication set Ct(α)

9 / 14



Algorithm 1 The UCB-TCOM Algorithm (for each agent)

1: Input: communication arm set parameter α and buffering ratio β

2: Initialization: n̂t(k) = 0,Nt(k) = 0, µ̂t(k) = 0, τt(k) = 0
3: for each decision round t do ▷ Parallelly run for-loops in Lines 3 and 12.
4: Pull arm At with the highest global UCB
5: Observe arm At ’s reward Xt(At)

6: if At ∈ Ct(α) then ▷ Pick suboptim arms for observation sharing
7: Increase Nt(At) by 1
8: Update this phase’s empirical mean µ̃t(At)

9: if Nt(At) ⩾
⌈
βNτt (At )(At)

⌉
then ▷ Buffer size increases geometrically.

10: Broadcast the message (µ̃t(At),Nt(At),At)
11: τt(At)← t

12: for each newly received message (µ̃t(k),Nt(k), k) from the past round do
13: Update the empirical mean µ̂t(k), n̂t(k), and the communication set Ct(α)

9 / 14



Algorithm 1 The UCB-TCOM Algorithm (for each agent)

1: Input: communication arm set parameter α and buffering ratio β

2: Initialization: n̂t(k) = 0,Nt(k) = 0, µ̂t(k) = 0, τt(k) = 0
3: for each decision round t do ▷ Parallelly run for-loops in Lines 3 and 12.
4: Pull arm At with the highest global UCB
5: Observe arm At ’s reward Xt(At)

6: if At ∈ Ct(α) then ▷ Pick suboptim arms for observation sharing
7: Increase Nt(At) by 1
8: Update this phase’s empirical mean µ̃t(At)

9: if Nt(At) ⩾
⌈
βNτt (At )(At)

⌉
then ▷ Buffer size increases geometrically.

10: Broadcast the message (µ̃t(At),Nt(At),At)
11: τt(At)← t

12: for each newly received message (µ̃t(k),Nt(k), k) from the past round do
13: Update the empirical mean µ̂t(k), n̂t(k), and the communication set Ct(α)

9 / 14



Algorithm 1 The UCB-TCOM Algorithm (for each agent)

1: Input: communication arm set parameter α and buffering ratio β

2: Initialization: n̂t(k) = 0,Nt(k) = 0, µ̂t(k) = 0, τt(k) = 0
3: for each decision round t do ▷ Parallelly run for-loops in Lines 3 and 12.
4: Pull arm At with the highest global UCB
5: Observe arm At ’s reward Xt(At)

6: if At ∈ Ct(α) then ▷ Pick suboptim arms for observation sharing
7: Increase Nt(At) by 1
8: Update this phase’s empirical mean µ̃t(At)

9: if Nt(At) ⩾
⌈
βNτt (At )(At)

⌉
then ▷ Buffer size increases geometrically.

10: Broadcast the message (µ̃t(At),Nt(At),At)
11: τt(At)← t
12: for each newly received message (µ̃t(k),Nt(k), k) from the past round do
13: Update the empirical mean µ̂t(k), n̂t(k), and the communication set Ct(α)

9 / 14



Theoretical Results of UCB-TCOM

−
√

2 0

1

√
2

Communication: 0
Theorem 2(i)

O(logβ(logT ))
Theorem 2(ii) and 2(iii)

O(logβ T )
Theorem 2(iv)

Group Regret: O(MT ) O(K logT )
Theorem 1

α

When α ∈
(

1,
√

2
)

, UCB-TCOM achieves the near-optimal group regret upper
bounds with O(log(logT )) communications.

Symmetric: E[Rind
T (A)] =

E[Rgro
T (A)]
M

—near-optimal individual regret.
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Simulations (1/3): UCB-TCOM vs. Baselines

(a) Group regret (b) Individual regret (c) Communications

Figure 5: UCB-TCOM vs. Dec_UCB, GosInE, DPE2, ComEx and COUCB
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Simulations (2/3): Tunable Parameters α and β

(a) Varying α (given β = 2) (b) Varying β (given α = 1.2)

Figure 6: Impact of communication set parameter α with fixed β = 2 in Figures 6a; and
buffering ratio β with fixed α = 1.2 in Figures 6b
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Simulations (3/3): Meta-Policy TCOM to AAE and TS

(a) Group regret (b) Individual regret (c) Communications

Figure 7: UCB-TCOM vs. AAE-TCOM, TS-TCOM
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Conclusion

1 An algorithm achieves the near-optimal individual and group regrets with
O(log logT ) communications.

2 A meta and tunable communication policy TCOM.
1 share suboptimal action’s observations;
2 geometrical growth buffer;
3 symmetric design.

Future works:
Pareto frontier of group/individual regrets vs. communication costs trade-off.
Remove the time-dependence of the communication costs.
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Full paper at openreview.net/forum?id=QTXKTXJKIh
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Detail of Communication Arm Set Construction

Given tuning parameter α, communication arm set Ct(α) of agent i at time t
contains all arms identified as suboptimal, i.e.,

Ct(α) := {k ∈ [K ] : ∃k ′ ∈ [K ] \ {k} such that tUCBt(k ′, α) > tLCBt(k , α)}, (1)

where tUCBt(k , α) := µ̂t(k) + α

√
log t
n̂t(k)

, and tLCBt(k , α) := µ̂t(k)− α

√
log t
n̂t(k)

,

and n̂t(k) denotes the number of times of the global reward observations of arm k
up to time slot t .
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Theoretial Results Detail (1/2)

Theorem (Regret upper bounds of UCB-TCOM for α > 1)

When the communication arm set parameter α > 11 and buffering-ratio β > 1,
UCB-TCOM attains a near-optimal group regret upper bound in terms of number of
decision rounds T , arms K , and agents M, or formally,

E[RT(A)] ⩽
∑
k>1

8β logT
∆(k)

+ MK
2α2 − 1
α2 − 1

, (2)

and UCB-TCOM also attains a near-optimal individual regret upper bound, or
formally,

E[Rind
T (A)] ⩽

∑
k>1

8β logT
M∆(k)

+ K
2α2 − 1
α2 − 1

. (3)

1The condition α > 1 can be relaxed to α > 1/
√

2 via the peeling technique.
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Theoretical Results Detail (2/2)
Theorem (communication costs of UCB-TCOM for all α)

The communication costs of UCB-TCOM has the following properties:

(i) When α ⩽ −
√

2, no communication occurs among agents.

(ii) When −
√

2 < α <
√

2 and β > 1, the number of broadcasts of observations of
the optimal arm by one agent is O(log(logT )). More rigorously, it is less than

logβ

((√
2 + α√
2− α

)2(
8 logT
∆2

2
+ MK

2α2 − 1
α2 − 1

))
. (4)

(iii) When α > 1, almost all observations of suboptimal arms—except for a finite
number independent of T—are broadcast.

(iv) When α ⩾ 2
√

2µ(1)
∆2

, almost all observations of the optimal arm—except for a
finite number that is independent of T—are broadcast.
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