Achieving Near-Optimal Individual Regret & Low Communications in Multi-Agent Bandits

Xuchuang Wang¹, Lin Yang², Yu-Zhen Janice Chen³, Xutong Liu¹, Mohammad Hajiesmaili³, Don Towsley³, John C.S. Lui¹

To Appear in ICLR 2023

The Chinese University of Hong Kong¹, Nanjing University², University of Massachusetts Amherst³

香港中文大學 The Chinese University of Hong Kong

March 5, 2023

K arms: each associated with a Bernoulli variable X_t(k) with mean μ(k).
 Assume μ(1) > · · · > μ(K).

K arms: each associated with a Bernoulli variable $X_t(k)$ with mean $\mu(k)$.

Assume $\mu(1) > \cdots > \mu(K)$.

Time	1	2	3	4	5	6	 Т
Arm 1							
Arm 2							
Arm 3							
Arm 4							
Arm 5							
:							
Arm <i>K</i>							

K arms: each associated with a Bernoulli variable $X_t(k)$ with mean $\mu(k)$.

Assume $\mu(1) > \cdots > \mu(K)$.

• *K* arms: each associated with a Bernoulli variable $X_t(k)$ with mean $\mu(k)$.

• Assume $\mu(1) > \cdots > \mu(K)$.

• K arms: each associated with a Bernoulli variable $X_t(k)$ with mean $\mu(k)$.

• Assume $\mu(1) > \cdots > \mu(K)$.

K arms: each associated with a Bernoulli variable X_t(k) with mean μ(k).
 Assume μ(1) > · · · > μ(K).

K arms: each associated with a Bernoulli variable X_t(k) with mean μ(k).
 Assume μ(1) > ··· > μ(K).

K arms: each associated with a Bernoulli variable X_t(k) with mean μ(k).
 Assume μ(1) > · · · > μ(K).

K arms: each associated with a Bernoulli variable X_t(k) with mean μ(k).
 Assume μ(1) > · · · > μ(K).

K arms: each associated with a Bernoulli variable X_t(k) with mean μ(k).
 Assume μ(1) > · · · > μ(K).

K arms: each associated with a Bernoulli variable $X_t(k)$ with mean $\mu(k)$.

Assume $\mu(1) > \cdots > \mu(K)$.

- K arms: each associated with a Bernoulli variable X_t(k) with mean µ(k).
 Assume µ(1) > · · · > µ(K).
- **M** Agents in $t = 1, \ldots, T$:
 - Each agent *i* pulls an arm and collects reward $X_k^{(i)}$ from pulled arms.

(a) Online advertising with multiple servers

(b) Cloud computing with multiple clients

(c) Clincal treatment with multiple hospitals

- K arms: each associated with a Bernoulli variable X_t(k) with mean µ(k).
 Assume µ(1) > · · · > µ(K).
- **M** Agents in $t = 1, \ldots, T$:

Each agent *i* pulls an arm and collects reward X_k⁽ⁱ⁾ from pulled arms.
 Group regret:

$$\mathbb{E}[\mathsf{R}^{\mathsf{gro}}_{\mathsf{T}}(\mathcal{A})] \coloneqq \textit{MT}\mu(\mathsf{1}) - \mathbb{E}\left[\sum\nolimits_{i \in [M]} \sum\nolimits_{t \in [T]} X^{(i)}_t(\mathcal{A}^{(i)}_t)\right]$$

- **K** arms: each associated with a Bernoulli variable $X_t(k)$ with mean $\mu(k)$. Assume $\mu(1) > \cdots > \mu(K)$.
- M Agents in $t = 1, \ldots, T$:

Each agent *i* pulls an arm and collects reward $X_{k}^{(i)}$ from pulled arms. Group rearet:

$$\mathbb{E}[\mathsf{R}^{\mathsf{gro}}_{\mathsf{T}}(\mathcal{A})] \coloneqq M \mathcal{T} \mu(\mathsf{1}) - \mathbb{E}\left[\sum_{i \in [M]} \sum_{t \in [\mathcal{T}]} X^{(i)}_t(\mathcal{A}^{(i)}_t)\right]$$

- Full communication: E[R^{gro}_T(A)] = Θ(K log T)
 No communication: E[R^{gro}_T(A)] = O(MK log T)

- **K** arms: each associated with a Bernoulli variable $X_t(k)$ with mean $\mu(k)$. Assume $\mu(1) > \cdots > \mu(K)$.
- M Agents in $t = 1, \ldots, T$:

Each agent *i* pulls an arm and collects reward $X_{k}^{(i)}$ from pulled arms. Group rearet:

$$\mathbb{E}[\mathsf{R}^{\mathsf{gro}}_{\mathsf{T}}(\mathcal{A})] \coloneqq M\mathcal{T}\mu(\mathsf{1}) - \mathbb{E}\left[\sum\nolimits_{i \in [M]} \sum\nolimits_{t \in [\mathcal{T}]} X^{(i)}_t(\mathcal{A}^{(i)}_t)\right]$$

- Full communication: E[R^{gro}_T(A)] = Θ(K log T)
 No communication: E[R^{gro}_T(A)] = O(MK log T)

Communication costs:

$$\mathbb{E}\left[\mathsf{C}_{\mathsf{T}}(\mathcal{A})\right] \coloneqq \mathbb{E}\left[\sum_{i \in [M]} \sum_{t \in [T]} \mathbb{1}\{\text{agent } i \text{ communicates in time } t\}\right]$$

New Objective: Maximum Individual Regret

(a) Drone swarm

(b) Path routing

(c) Max-min fairness

- Overall performance is sensitive to the "bad" agent.
- Max-min fairness is equivalent to minimizing the "bottleneck" agent's regret.

New Objective: Maximum Individual Regret

• Overall performance is sensitive to the "bad" agent.

■ Max-min fairness is equivalent to minimizing the "bottleneck" agent's regret.

$$\mathbb{E}[\mathsf{R}^{\mathsf{ind}}_{\mathsf{T}}(\mathcal{A})] \coloneqq \mathcal{T}\mu(1) - \mathbb{E}\left[\min_{i \in [M]} \sum_{t \in [T]} X^{(i)}_t(\mathcal{A}^{(i)}_t)\right].$$

	Individual regret	Group regret	Communication cost
DPE2 [Wang et al., 2020]	$O(K \log T)$	$O(K \log T)$	$O(K^2 M^2)$
ComEx [Madhushani and Leonard, 2021]	$O(K \log T)$	$O(K \log T)$	$O(KM \log T)$
GosInE [Chawla et al., 2020]	$O((K/M+2)\log T)$	$O((K+2M)\log T)$	$\Omega(\log T)$
Dec_UCB [Zhu et al. , 2021]	$O((K/M)\log T)$	$O(K \log T)$	O(MT)
UCB-TCOM (our algorithm)	$O((K/M)\log T)$	$O(K \log T)$	$O(KM \log(\log T))$

Table 1: A comparison summary of prior literature and this work

	Individual regret	Group regret	Communication cost
DPE2 [Wang et al., 2020]	$O(K \log T)$	$O(K \log T)$	$O(K^2 M^2)$
ComEx [Madhushani and Leonard, 2021]	$O(K \log T)$	$O(K \log T)$	$O(KM \log T)$
GosInE [Chawla et al ., 2020]	$O((K/M+2)\log T)$	$O((K+2M)\log T)$	$\Omega(\log T)$
Dec_UCB [Zhu et al., 2021]	$O((K/M)\log T)$	$O(K \log T)$	O(MT)
UCB-TCOM (our algorithm)	$O((K/M)\log T)$	$O(K \log T)$	$O(KM\log(\log T))$

1 The first near-optimal algorithm UCB-TCOM on individual regret with efficient communications.

	Individual regret	Group regret	Communication cost
DPE2 [Wang et al., 2020]	$O(K \log T)$	$O(K \log T)$	$O(K^2 M^2)$
ComEx [Madhushani and Leonard, 2021]	$O(K \log T)$	$O(K \log T)$	$O(KM \log T)$
GosInE [Chawla et al., 2020]	$O((K/M+2)\log T)$	$O((K+2M)\log T)$	$\Omega(\log T)$
Dec_UCB [Zhu et al., 2021]	$O((K/M)\log T)$	$O(K \log T)$	O(MT)
UCB-TCOM (our algorithm)	$O((K/M)\log T)$	$O(K \log T)$	$O(KM \log(\log T))$

- **1** The first near-optimal algorithm UCB-TCOM on individual regret with efficient communications.
- 2 A communication policy TCOM that

	Individual regret	Group regret	Communication cost
DPE2 [Wang et al., 2020]	$O(K \log T)$	$O(K \log T)$	$O(K^2 M^2)$
ComEx [Madhushani and Leonard, 2021]	$O(K \log T)$	$O(K \log T)$	$O(KM \log T)$
GosInE [Chawla et al., 2020]	$O((K/M+2)\log T)$	$O((K+2M)\log T)$	$\Omega(\log T)$
Dec_UCB [Zhu et al., 2021]	$O((K/M)\log T)$	$O(K \log T)$	O(MT)
UCB-TCOM (our algorithm)	$O((K/M)\log T)$	$O(K \log T)$	$O(KM \log(\log T))$

- **1** The first near-optimal algorithm UCB-TCOM on individual regret with efficient communications.
- 2 A communication policy TCOM that
 - (a) Meta policy: can be executed on top of any bandit algorithm;

	Individual regret	Group regret	Communication cost
DPE2 [Wang et al., 2020]	$O(K \log T)$	$O(K \log T)$	$O(K^2M^2)$
ComEx [Madhushani and Leonard, 2021]	$O(K \log T)$	$O(K \log T)$	$O(KM \log T)$
GosInE [Chawla et al., 2020]	$O((K/M+2)\log T)$	$O((K+2M)\log T)$	$\Omega(\log T)$
Dec_UCB [Zhu et al., 2021]	$O((K/M)\log T)$	$O(K \log T)$	O(MT)
UCB-TCOM (our algorithm)	$O((K/M)\log T)$	$O(K \log T)$	$O(KM \log(\log T))$

- **1** The first near-optimal algorithm UCB-TCOM on individual regret with efficient communications.
- 2 A communication policy TCOM that
 - (a) Meta policy: can be executed on top of any bandit algorithm;
 - (b) **Tunable:** can be tuned to trade off communications (0 to O(T)) with regrets.

Tunable COMmunication TCOM (1/3): $O(\log T)$ Focus on Suboptimal Arms' Observation Sharing

IDEA: Share suboptimal arms' obs., Yes! Share optimal arm, No.

- share suboptimal arms' observation \Rightarrow reduce this arm's #pulls \Rightarrow save cost
- \blacksquare share optimal arms' observation \Rightarrow reduce this arm's $\# pulls \Rightarrow$ increase cost

Tunable COMmunication TCOM (1/3): $O(\log T)$ Focus on Suboptimal Arms' Observation Sharing

IDEA: Share suboptimal arms' obs., Yes! Share optimal arm, No.

- share suboptimal arms' observation \Rightarrow reduce this arm's #pulls \Rightarrow save cost
- share optimal arms' observation \Rightarrow reduce this arm's #pulls \Rightarrow increase cost

DESIGN: Construct a communication arm set $C_t(\alpha)$

- include the arms that are likely to be suboptimal.
- only share new observations for arms in the set $C_t(\alpha)$.

Tunable COMmunication TCOM (1/3): $O(\log T)$ Focus on Suboptimal Arms' Observation Sharing

IDEA: Share suboptimal arms' obs., Yes! Share optimal arm, No.

- share suboptimal arms' observation \Rightarrow reduce this arm's #pulls \Rightarrow save cost
- share optimal arms' observation \Rightarrow reduce this arm's #pulls \Rightarrow increase cost

DESIGN: Construct a communication arm set $C_t(\alpha)$

- include the arms that are likely to be suboptimal.
- only share new observations for arms in the set $C_t(\alpha)$.

Tunable COMunication TCOM (2/3): $O(\log_{\beta} \log T)$ **Dynamically Buffer Observations for Communication**

IDEA: Regret only deteriorates up to a constant multiplier when the observation delays increase geometrically [Gao et al., 2019].

Tunable COMunication TCOM (2/3): $O(\log_{\beta} \log T)$ **Dynamically Buffer Observations for Communication**

- IDEA: Regret only deteriorates up to a constant multiplier when the observation delays increase geometrically [Gao et al., 2019].
- DESIGN: Buffer observations and communicate whenever the buffered #obs increases by a ratio β (> 1).
 - e.g., if the ratio β is 2, broadcast when $N_t(k) = 2, 4, 8, 16, \dots$

Tunable COMunication TCOM (2/3): $O(\log_{\beta} \log T)$ **Dynamically Buffer Observations for Communication**

- IDEA: Regret only deteriorates up to a constant multiplier when the observation delays increase geometrically [Gao et al., 2019].
- DESIGN: Buffer observations and communicate whenever the buffered #obs increases by a ratio β (> 1).

• e.g., if the ratio β is 2, broadcast when $N_t(k) = 2, 4, 8, 16, \dots$

Tunable COMunication TCOM (3/3): $\mathbb{E}[\mathbb{R}^{\text{ind}}_{\mathsf{T}}(\mathcal{A})] = \frac{\mathbb{E}[\mathbb{R}^{\text{gro}}_{\mathsf{T}}(\mathcal{A})]}{M}$ Symmetric Actions for All Agents

IDEA: Minimize maximum individual regret ⇐⇒ Evenly divide group regret ⇐ In each time slot, all agents pull the same arm

Tunable COMunication TCOM (3/3): $\mathbb{E}[\mathsf{R}^{\mathsf{ind}}_{\mathsf{T}}(\mathcal{A})] = \frac{\mathbb{E}[\mathsf{R}^{\mathsf{gro}}_{\mathsf{T}}(\mathcal{A})]}{M}$ Symmetric Actions for All Agents

IDEA: Minimize maximum individual regret

- \iff Evenly divide group regret
- \Leftarrow In each time slot, all agents pull the same arm
- DESIGN: Agents run the same arm-pulling policy and use the same set of global observations (communicated to all agents).

- 1: Input: communication arm set parameter α and buffering ratio β
- 2: Initialization: $\hat{n}_t(k) = 0, N_t(k) = 0, \hat{\mu}_t(k) = 0, \tau_t(k) = 0$
- 3: for each decision round t do \triangleright Parallelly run for-loops in Lines 3 and 12.

12: **for** each newly received message $(\tilde{\mu}_t(k), N_t(k), k)$ from the past round **do** 13: Update the empirical mean $\hat{\mu}_t(k)$, $\hat{n}_t(k)$, and the communication set $C_t(\alpha)$

- 1: Input: communication arm set parameter α and buffering ratio β
- 2: Initialization: $\hat{n}_t(k) = 0, N_t(k) = 0, \hat{\mu}_t(k) = 0, \tau_t(k) = 0$
- 3: for each decision round t do \triangleright Parallelly run for-loops in Lines 3 and 12.
- 4: Pull arm A_t with the highest global UCB
- 5: Observe arm A_t 's reward $X_t(\overline{A_t})$

12: for each newly received message $(\tilde{\mu}_t(k), N_t(k), k)$ from the past round **do**

13: Update the empirical mean $\hat{\mu}_t(k)$, $\hat{n}_t(k)$, and the communication set $C_t(\alpha)$

- 1: Input: communication arm set parameter α and buffering ratio β
- 2: Initialization: $\hat{n}_t(k) = 0, N_t(k) = 0, \hat{\mu}_t(k) = 0, \tau_t(k) = 0$
- 3: for each decision round t do \triangleright Parallelly run for-loops in Lines 3 and 12.
- 4: Pull arm A_t with the highest global UCB
- 5: Observe arm A_t 's reward $X_t(\overline{A_t})$
- 6: if $A_t \in C_t(\alpha)$ then

Pick suboptim arms for observation sharing

- 7: Increase $N_t(A_t)$ by 1
- 8: Update this phase's empirical mean $\tilde{\mu}_t(A_t)$

12: for each newly received message $(\tilde{\mu}_t(k), N_t(k), k)$ from the past round **do**

13: Update the empirical mean $\hat{\mu}_t(k)$, $\hat{n}_t(k)$, and the communication set $C_t(\alpha)$

- 1: Input: communication arm set parameter α and buffering ratio β
- 2: Initialization: $\hat{n}_t(k) = 0, N_t(k) = 0, \hat{\mu}_t(k) = 0, \tau_t(k) = 0$
- 3: for each decision round t do \triangleright Parallelly run for-loops in Lines 3 and 12.
- 4: Pull arm A_t with the highest global UCB
- 5: Observe arm A_t 's reward $X_t(\overline{A_t})$
- 6: if $A_t \in C_t(\alpha)$ then \triangleright

Pick suboptim arms for observation sharing

- 7: Increase $N_t(A_t)$ by 1
- 8: Update this phase's empirical mean $\tilde{\mu}_t(A_t)$
- 9: if $N_t(A_t) \ge \lceil \beta N_{\tau_t(A_t)}(A_t) \rceil$ then \triangleright Buffer size increases geometrically.
- 10: Broadcast the message $(\tilde{\mu}_t(A_t), N_t(A_t), A_t)$
- 12: for each newly received message $(\tilde{\mu}_t(k), N_t(k), k)$ from the past round **do**
- 13: Update the empirical mean $\hat{\mu}_t(k)$, $\hat{n}_t(k)$, and the communication set $C_t(\alpha)$

■ When $\alpha \in (1, \sqrt{2})$, UCB-TCOM achieves the near-optimal group regret upper bounds with $O(\log(\log T))$ communications.

■ When $\alpha \in (1, \sqrt{2})$, UCB-TCOM achieves the near-optimal group regret upper bounds with $O(\log(\log T))$ communications.

Symmetric:
$$\mathbb{E}[\mathsf{R}^{\mathsf{ind}}_{\mathsf{T}}(\mathcal{A})] = \frac{\mathbb{E}[\mathsf{R}^{\mathsf{gro}}_{\mathsf{T}}(\mathcal{A})]}{M}$$
-near-optimal individual regret.

Simulations (1/3): UCB-TCOM vs. Baselines

Figure 5: UCB-TCOM vs. Dec_UCB, GosInE, DPE2, ComEx and COUCB

Simulations (2/3): Tunable Parameters α and β

Figure 6: Impact of communication set parameter α with fixed $\beta = 2$ in Figures 6a; and buffering ratio β with fixed $\alpha = 1.2$ in Figures 6b

Simulations (3/3): Meta-Policy TCOM to AAE and TS

Figure 7: UCB-TCOM vs. AAE-TCOM, TS-TCOM

Conclusion

- 1 An algorithm achieves the near-optimal individual and group regrets with $O(\log \log T)$ communications.
- 2 A meta and tunable communication policy TCOM.
 - share suboptimal action's observations;
 - 2 geometrical growth buffer;
 - 3 symmetric design.

Conclusion

- 1 An algorithm achieves the near-optimal individual and group regrets with $O(\log \log T)$ communications.
- 2 A meta and tunable communication policy TCOM.
 - 1 share suboptimal action's observations;
 - 2 geometrical growth buffer;
 - 3 symmetric design.

Future works:

- Pareto frontier of group/individual regrets vs. communication costs trade-off.
- Remove the time-dependence of the communication costs.

Thank you!

Full paper at openreview.net/forum?id=QTXKTXJKIh

Detail of Communication Arm Set Construction

Given tuning parameter α , communication arm set $C_t(\alpha)$ of agent *i* at time *t* contains all arms identified as suboptimal, i.e.,

$$\mathcal{C}_t(\alpha) \coloneqq \{ k \in [K] : \exists k' \in [K] \setminus \{ k \} \text{ such that } \mathsf{tUCB}_t(k', \alpha) > \mathsf{tLCB}_t(k, \alpha) \}, \quad (1)$$

where
$$\operatorname{tUCB}_t(k, \alpha) \coloneqq \hat{\mu}_t(k) + \alpha \sqrt{\frac{\log t}{\hat{n}_t(k)}}$$
, and $\operatorname{tLCB}_t(k, \alpha) \coloneqq \hat{\mu}_t(k) - \alpha \sqrt{\frac{\log t}{\hat{n}_t(k)}}$,

and $\hat{n}_t(k)$ denotes the number of times of the global reward observations of arm k up to time slot t.

Theoretial Results Detail (1/2)

Theorem (Regret upper bounds of UCB-TCOM for $\alpha > 1$)

When the communication arm set parameter $\alpha > 1^1$ and buffering-ratio $\beta > 1$, UCB-TCOM attains a near-optimal group regret upper bound in terms of number of decision rounds T, arms K, and agents M, or formally,

$$\mathbb{E}[\mathsf{R}_{\mathsf{T}}(\mathcal{A})] \leqslant \sum_{k>1} \frac{8\beta \log T}{\Delta(k)} + M K \frac{2\alpha^2 - 1}{\alpha^2 - 1},$$
(2)

and UCB-TCOM also attains a near-optimal individual regret upper bound, or formally,

$$\mathbb{E}[\mathsf{R}_{\mathsf{T}}^{\mathsf{ind}}(\mathcal{A})] \leq \sum_{k>1} \frac{8\beta \log T}{M\Delta(k)} + K \frac{2\alpha^2 - 1}{\alpha^2 - 1}.$$
(3)

¹The condition $\alpha > 1$ can be relaxed to $\alpha > 1/\sqrt{2}$ via the peeling technique.

Theoretical Results Detail (2/2)

Theorem (communication costs of UCB-TCOM for all α)

The communication costs of UCB-TCOM has the following properties:

- (i) When $\alpha \leq -\sqrt{2}$, no communication occurs among agents.
- (ii) When $-\sqrt{2} < \alpha < \sqrt{2}$ and $\beta > 1$, the number of broadcasts of observations of the optimal arm by one agent is $O(\log(\log T))$. More rigorously, it is less than

$$\log_{\beta}\left(\left(\frac{\sqrt{2}+\alpha}{\sqrt{2}-\alpha}\right)^{2}\left(\frac{8\log T}{\Delta_{2}^{2}}+MK\frac{2\alpha^{2}-1}{\alpha^{2}-1}\right)\right).$$
 (4)

(iii) When $\alpha > 1$, almost all observations of suboptimal arms—except for a finite number independent of T—are broadcast.

(iv) When $\alpha \ge \frac{2\sqrt{2}\mu(1)}{\Delta_2}$, almost all observations of the optimal arm—except for a finite number that is independent of T—are broadcast.

References I

Ronshee Chawla, Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. The gossiping insert-eliminate algorithm for multi-agent bandits. In *International Conference on Artificial Intelligence and Statistics*, pages 3471–3481. PMLR, 2020.

- Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem. *Advances in Neural Information Processing Systems*, 32, 2019.
- Udari Madhushani and Naomi Leonard. When to call your neighbor? strategic communication in cooperative stochastic bandits. *arXiv preprint arXiv:2110.04396*, 2021.
- Po-An Wang, Alexandre Proutiere, Kaito Ariu, Yassir Jedra, and Alessio Russo. Optimal algorithms for multiplayer multi-armed bandits. In *International Conference on Artificial Intelligence and Statistics*, pages 4120–4129. PMLR, 2020.

References II

Jingxuan Zhu, Ethan Mulle, Christopher Salomon Smith, and Ji Liu. Decentralized multi-armed bandit can outperform classic upper confidence bound. *arXiv* preprint arXiv:2111.10933, 2021.